BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11641362)

  • 1. Changes in cerebral oxygenation and blood flow during LBNP in spinal cord-injured individuals.
    Houtman S; Serrador JM; Colier WN; Strijbos DW; Shoemaker K; Hopman MT
    J Appl Physiol (1985); 2001 Nov; 91(5):2199-204. PubMed ID: 11641362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic circulation and cerebral oxygenation during head-up tilt in spinal cord injured individuals.
    Houtman S; Colier WN; Oeseburg B; Hopman MT
    Spinal Cord; 2000 Mar; 38(3):158-63. PubMed ID: 10795936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress.
    Zhang R; Zuckerman JH; Pawelczyk JA; Levine BD
    J Appl Physiol (1985); 1997 Dec; 83(6):2139-45. PubMed ID: 9390992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-exercise hypotension and cardiovascular responses to moderate orthostatic stress in endurance-trained males.
    Scott JM; Esch BT; Lusina SJ; McKenzie DC; Koehle MS; Sheel AW; Warburton DE
    Appl Physiol Nutr Metab; 2008 Apr; 33(2):246-53. PubMed ID: 18347679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental high thoracic spinal cord injury impairs the cardiac and cerebrovascular response to orthostatic challenge in rats.
    Hayes BD; Fossey MPM; Poormasjedi-Meibod MS; Erskine E; Soriano JE; Scott B; Rosentreter R; Granville DJ; Phillips AA; West CR
    Am J Physiol Heart Circ Physiol; 2021 Oct; 321(4):H716-H727. PubMed ID: 34448635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does peripheral nerve degeneration affect circulatory responses to head-up tilt in spinal cord-injured individuals?
    Groothuis JT; Boot CR; Houtman S; van Langen H; Hopman MT
    Clin Auton Res; 2005 Apr; 15(2):99-106. PubMed ID: 15834766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthostatic tolerance, cerebral oxygenation, and blood velocity in humans with sympathetic failure.
    Harms MP; Colier WN; Wieling W; Lenders JW; Secher NH; van Lieshout JJ
    Stroke; 2000 Jul; 31(7):1608-14. PubMed ID: 10884461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiovascular responses during arm exercise and orthostatic challenge in individuals with paraplegia.
    Raymond J; Davis GM; Clarke J; Bryant G
    Eur J Appl Physiol; 2001 Jul; 85(1-2):89-95. PubMed ID: 11513326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lower body negative pressure on cerebral circulation.
    Ueno T; Yoshimoto S; Mayanagi Y; Sekiguchi C; Yajima K
    Aviat Space Environ Med; 1993 Nov; 64(11):1006-10. PubMed ID: 8280032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain.
    Zhang R; Zuckerman JH; Levine BD
    J Appl Physiol (1985); 1998 Sep; 85(3):1113-22. PubMed ID: 9729590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute physiological effects of whole body vibration (WBV) on central hemodynamics, muscle oxygenation and oxygen consumption in individuals with chronic spinal cord injury.
    Yarar-Fisher C; Pascoe DD; Gladden LB; Quindry JC; Hudson J; Sefton J
    Disabil Rehabil; 2014; 36(2):136-45. PubMed ID: 23651125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically induced and voluntary activation of physiologic muscle pump: a comparison between spinal cord-injured and able-bodied individuals.
    Faghri PD; Yount J
    Clin Rehabil; 2002 Dec; 16(8):878-85. PubMed ID: 12501950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cerebral oxygenation and regional cerebral blood flow on tolerance to central hypovolemia.
    Kay VL; Rickards CA
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R375-83. PubMed ID: 26676249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation.
    Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA
    Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrovascular responses to orthostatic stress after spinal cord injury.
    Sahota IS; Ravensbergen HR; McGrath MS; Claydon VE
    J Neurotrauma; 2012 Oct; 29(15):2446-56. PubMed ID: 22720841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes of human cerebral blood flow velocity and blood oxygen saturation under lower body negative pressure in upright seated position].
    Han WQ; Liu HF; Zhao FT; Ma RS; Cheng HW; Ni HY
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):170-3. PubMed ID: 12222570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular control during exercise: insights from spinal cord-injured humans.
    Dela F; Mohr T; Jensen CM; Haahr HL; Secher NH; Biering-Sørensen F; Kjaer M
    Circulation; 2003 Apr; 107(16):2127-33. PubMed ID: 12695298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral blood velocity regulation during progressive blood loss compared with lower body negative pressure in humans.
    Rickards CA; Johnson BD; Harvey RE; Convertino VA; Joyner MJ; Barnes JN
    J Appl Physiol (1985); 2015 Sep; 119(6):677-85. PubMed ID: 26139213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine.
    Phillips AA; Krassioukov AV; Ainslie PN; Warburton DE
    J Appl Physiol (1985); 2014 Mar; 116(6):645-53. PubMed ID: 24436297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of cardiovascular responses to an orthostatic challenge in trained spinal cord-injured individuals.
    Itoh M; Endo MY; Hojo T; Yoshimura M; Fukuoka Y
    J Physiol Anthropol; 2018 Sep; 37(1):22. PubMed ID: 30268154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.