BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11641907)

  • 41. Furin-dependent intracellular activation of the human stromelysin-3 zymogen.
    Pei D; Weiss SJ
    Nature; 1995 May; 375(6528):244-7. PubMed ID: 7746327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for propeptide-assisted folding of the calcium-dependent protease of the cyanobacterium Anabaena.
    Baier K; Nicklisch S; Maldener I; Lockau W
    Eur J Biochem; 1996 Nov; 241(3):750-5. PubMed ID: 8944762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and function of procollagen C-proteinase (mTolloid) domains determined by protease digestion, circular dichroism, binding to procollagen type I, and computer modeling.
    Sieron AL; Tretiakova A; Jameson BA; Segall ML; Lund-Katz S; Khan MT; Li Sw; Stöcker W
    Biochemistry; 2000 Mar; 39(12):3231-9. PubMed ID: 10727214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protease pro region required for folding is a potent inhibitor of the mature enzyme.
    Baker D; Silen JL; Agard DA
    Proteins; 1992 Apr; 12(4):339-44. PubMed ID: 1579568
    [TBL] [Abstract][Full Text] [Related]  

  • 45. C-Terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism.
    Dutta S; Choudhury D; Dattagupta JK; Biswas S
    FEBS J; 2011 Sep; 278(17):3012-24. PubMed ID: 21707922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process.
    Zhu XL; Ohta Y; Jordan F; Inouye M
    Nature; 1989 Jun; 339(6224):483-4. PubMed ID: 2657436
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Staphylococcal SplB serine protease utilizes a novel molecular mechanism of activation.
    Pustelny K; Zdzalik M; Stach N; Stec-Niemczyk J; Cichon P; Czarna A; Popowicz G; Mak P; Drag M; Salvesen GS; Wladyka B; Potempa J; Dubin A; Dubin G
    J Biol Chem; 2014 May; 289(22):15544-53. PubMed ID: 24713703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The PepSY domain: a regulator of peptidase activity in the microbial environment?
    Yeats C; Rawlings ND; Bateman A
    Trends Biochem Sci; 2004 Apr; 29(4):169-72. PubMed ID: 15124630
    [No Abstract]   [Full Text] [Related]  

  • 49. Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis.
    Lanigan-Gerdes S; Dooley AN; Faull KF; Lazazzera BA
    Mol Microbiol; 2007 Sep; 65(5):1321-33. PubMed ID: 17666034
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus.
    Wetmore DR; Wong SL; Roche RS
    Mol Microbiol; 1992 Jun; 6(12):1593-604. PubMed ID: 1495388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteolytic enzymes from recombinant Streptomyces lividans TK24.
    Aretz W; Koller KP; Riess G
    FEMS Microbiol Lett; 1989 Nov; 53(1-2):31-5. PubMed ID: 2693198
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Destructive twisting of neutral metalloproteases: the catalysis mechanism of the Dispase autolysis-inducing protein from Streptomyces mobaraensis DSM 40487.
    Fiebig D; Storka J; Roeder M; Meyners C; Schmelz S; Blankenfeldt W; Scrima A; Kolmar H; Fuchsbauer HL
    FEBS J; 2018 Nov; 285(22):4246-4264. PubMed ID: 30171661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An endogenous target protease, SAM-P26, of Streptomyces protease inhibitor (SSI): primary structure, enzymatic characterization, and its interaction with SSI.
    Taguchi S; Yamada S; Kojima S; Momose H
    J Biochem; 1998 Oct; 124(4):804-10. PubMed ID: 9756627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amino acid sequence of extracellular acidic protease V5 of Dichelobacter nodosus, the causative organism of ovine footrot.
    Kortt AA; Riffkin MC; Focareta A; Stewart DJ
    Biochem Mol Biol Int; 1993 Apr; 29(6):989-98. PubMed ID: 8330022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Folding of subtilisin BPN': role of the pro-sequence.
    Eder J; Rheinnecker M; Fersht AR
    J Mol Biol; 1993 Sep; 233(2):293-304. PubMed ID: 8377204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The 2.8 A resolution structure of Streptomyces griseus protease B and its homology with alpha-chymotrypsin and Streptomyces griseus protease A.
    Delbaere LT; Brayer GD; James MN
    Can J Biochem; 1979 Feb; 57(2):135-44. PubMed ID: 110426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases.
    Santavicca M; Noel A; Angliker H; Stoll I; Segain JP; Anglard P; Chretien M; Seidah N; Basset P
    Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):953-8. PubMed ID: 8645182
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The autocatalytic processing of the subtilisin Carlsberg pro-region is independent of the primary structure of the cleavage site.
    Egnell P; Flock JI
    Mol Microbiol; 1992 May; 6(9):1115-9. PubMed ID: 1588813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel serine protease inhibitor acts as an immunomodulatory switch while maintaining homeostasis.
    Jiang N; Thangamani S; Chor CF; Wang SY; Winarsih I; Du RJ; Sivaraman J; Ho B; Ding JL
    J Innate Immun; 2009; 1(5):465-79. PubMed ID: 20375604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.