These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 11642444)
1. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Gihring TM; Druschel GK; McCleskey RB; Hamers RJ; Banfield JF Environ Sci Technol; 2001 Oct; 35(19):3857-62. PubMed ID: 11642444 [TBL] [Abstract][Full Text] [Related]
2. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification. Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470 [TBL] [Abstract][Full Text] [Related]
3. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Langner HW; Jackson CR; McDermott TR; Inskeep WP Environ Sci Technol; 2001 Aug; 35(16):3302-9. PubMed ID: 11529568 [TBL] [Abstract][Full Text] [Related]
4. Arsenite oxidation and arsenate respiration by a new Thermus isolate. Gihring TM; Banfield JF FEMS Microbiol Lett; 2001 Nov; 204(2):335-40. PubMed ID: 11731145 [TBL] [Abstract][Full Text] [Related]
5. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring. Härtig C; Planer-Friedrich B Environ Sci Technol; 2012 Apr; 46(8):4348-56. PubMed ID: 22380721 [TBL] [Abstract][Full Text] [Related]
6. Different sulfide to arsenic ratios driving arsenic speciation and microbial community interactions in two alkaline hot springs. Qing C; Nicol A; Li P; Planer-Friedrich B; Yuan C; Kou Z Environ Res; 2023 Feb; 218():115033. PubMed ID: 36502897 [TBL] [Abstract][Full Text] [Related]
7. DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Williams RA; Smith KE; Welch SG; Micallef J; Sharp RJ Int J Syst Bacteriol; 1995 Jul; 45(3):495-9. PubMed ID: 8590676 [TBL] [Abstract][Full Text] [Related]
8. Oxidation of arsenite in groundwater using ozone and oxygen. Kim MJ; Nriagu J Sci Total Environ; 2000 Feb; 247(1):71-9. PubMed ID: 10721144 [TBL] [Abstract][Full Text] [Related]
9. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters. Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902 [TBL] [Abstract][Full Text] [Related]
10. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Donahoe-Christiansen J; D'Imperio S; Jackson CR; Inskeep WP; McDermott TR Appl Environ Microbiol; 2004 Mar; 70(3):1865-8. PubMed ID: 15006819 [TBL] [Abstract][Full Text] [Related]
11. Chemolithotrophic growth of the aerobic hyperthermophilic bacterium Thermocrinis ruber OC 14/7/2 on monothioarsenate and arsenite. Härtig C; Lohmayer R; Kolb S; Horn MA; Inskeep WP; Planer-Friedrich B FEMS Microbiol Ecol; 2014 Dec; 90(3):747-60. PubMed ID: 25251939 [TBL] [Abstract][Full Text] [Related]
12. Construction of a genetically engineered microorganism with high tolerance to arsenite and strong arsenite oxidative ability. Yang C; Xu L; Yan L; Xu Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(6):732-7. PubMed ID: 20390921 [TBL] [Abstract][Full Text] [Related]
13. Speciation and oxidation kinetics of arsenic in the thermal springs of Wiesbaden spa, Germany. Schwenzer SP; Tommaseo CE; Kersten M; Kirnbauer T Fresenius J Anal Chem; 2001 Dec; 371(7):927-33. PubMed ID: 11769802 [TBL] [Abstract][Full Text] [Related]
14. Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord Desert. Connon SA; Koski AK; Neal AL; Wood SA; Magnuson TS FEMS Microbiol Ecol; 2008 Apr; 64(1):117-28. PubMed ID: 18318711 [TBL] [Abstract][Full Text] [Related]
15. Role of galE on biofilm formation by Thermus spp. Niou YK; Wu WL; Lin LC; Yu MS; Shu HY; Yang HH; Lin GH Biochem Biophys Res Commun; 2009 Dec; 390(2):313-8. PubMed ID: 19800315 [TBL] [Abstract][Full Text] [Related]
16. Diverse respiratory capacity among Thermus strains from US Great Basin hot springs. Zhou EM; Adegboruwa AL; Mefferd CC; Bhute SS; Murugapiran SK; Dodsworth JA; Thomas SC; Bengtson AJ; Liu L; Xian WD; Li WJ; Hedlund BP Extremophiles; 2020 Jan; 24(1):71-80. PubMed ID: 31535211 [TBL] [Abstract][Full Text] [Related]
17. Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA. Munster MJ; Munster AP; Woodrow JR; Sharp RJ J Gen Microbiol; 1986 Jun; 132(6):1677-83. PubMed ID: 3806053 [TBL] [Abstract][Full Text] [Related]
18. An isochizomer of TaqI from Thermus thermophilus HB8. Sato S; Shinomiya T J Biochem; 1978 Nov; 84(5):1319-21. PubMed ID: 730757 [TBL] [Abstract][Full Text] [Related]
19. Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. Koyama Y; Hoshino T; Tomizuka N; Furukawa K J Bacteriol; 1986 Apr; 166(1):338-40. PubMed ID: 3957870 [TBL] [Abstract][Full Text] [Related]
20. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet. Yang Y; Mu Y; Zeng XC; Wu W; Yuan J; Liu Y; Guoji E; Luo F; Chen X; Li H; Wang J Ecotoxicology; 2017 May; 26(4):490-501. PubMed ID: 28251437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]