BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 11647)

  • 61. beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications.
    Coughlan MP; Hazlewood GP
    Biotechnol Appl Biochem; 1993 Jun; 17(3):259-89. PubMed ID: 8338637
    [No Abstract]   [Full Text] [Related]  

  • 62. Studies on cellulase of the cotton wilt pathogen Fusarium vasinfectum Atk.
    Sampathnarayanan A; Shanmugasundaram ER
    Mycopathol Mycol Appl; 1970 Dec; 41(3):223-32. PubMed ID: 4992799
    [No Abstract]   [Full Text] [Related]  

  • 63. Definition and characterization of enzymes for maximal biocatalytic solubilization of prebiotic polysaccharides from potato pulp.
    Thomassen LV; Larsen DM; Mikkelsen JD; Meyer AS
    Enzyme Microb Technol; 2011 Aug; 49(3):289-97. PubMed ID: 22112514
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Production, purification and partial characterization of an endo-polygalacturonase from Cryptococcus albidus var. albidus.
    Federici F
    Antonie Van Leeuwenhoek; 1985; 51(2):139-50. PubMed ID: 4037779
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants.
    Sénéchal F; Wattier C; Rustérucci C; Pelloux J
    J Exp Bot; 2014 Oct; 65(18):5125-60. PubMed ID: 25056773
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential.
    Lemaire A; Duran Garzon C; Perrin A; Habrylo O; Trezel P; Bassard S; Lefebvre V; Van Wuytswinkel O; Guillaume A; Pau-Roblot C; Pelloux J
    Carbohydr Polym; 2020 Nov; 248():116752. PubMed ID: 32919555
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Potential physiological role of plant glycosidase inhibitors.
    Bellincampi D; Camardella L; Delcour JA; Desseaux V; D'Ovidio R; Durand A; Elliot G; Gebruers K; Giovane A; Juge N; Sørensen JF; Svensson B; Vairo D
    Biochim Biophys Acta; 2004 Feb; 1696(2):265-74. PubMed ID: 14871667
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The degradation of polygalacturonic acid by rumen ciliate protozoa.
    Coleman GS; Sandford DC; Beahon S
    J Gen Microbiol; 1980 Oct; 120(2):295-300. PubMed ID: 6785383
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polysaccharide lyases.
    Linhardt RJ; Galliher PM; Cooney CL
    Appl Biochem Biotechnol; 1986 Apr; 12(2):135-76. PubMed ID: 3521491
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes.
    Nakagawa T; Nagaoka T; Taniguchi S; Miyaji T; Tomizuka N
    Lett Appl Microbiol; 2004; 38(5):383-7. PubMed ID: 15059208
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biotechnological potential of pectinolytic complexes of fungi.
    Lara-Márquez A; Zavala-Páramo MG; López-Romero E; Camacho HC
    Biotechnol Lett; 2011 May; 33(5):859-68. PubMed ID: 21246254
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Degradation of plant cell walls by a nematode.
    Popeijus H; Overmars H; Jones J; Blok V; Goverse A; Helder J; Schots A; Bakker J; Smant G
    Nature; 2000 Jul; 406(6791):36-7. PubMed ID: 10894530
    [No Abstract]   [Full Text] [Related]  

  • 73. Pectic enzymes in some pectinolytic rumen bacteria.
    Wojciechowicz M; Tomerska H
    Acta Microbiol Pol A; 1971; 3(1):57-61. PubMed ID: 5168995
    [No Abstract]   [Full Text] [Related]  

  • 74. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants.
    Dean RA; Timberlake WE
    Plant Cell; 1989 Mar; 1(3):265-73. PubMed ID: 2535501
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Some simple methods for the purification of pectic enzymes from Aspergillus usamii.
    Lanzarini G; Zamorani A
    J Sci Food Agric; 1975 Feb; 26(2):197-205. PubMed ID: 1134057
    [No Abstract]   [Full Text] [Related]  

  • 76. Combined HILIC-ELSD/ESI-MS(n) enables the separation, identification and quantification of sugar beet pectin derived oligomers.
    Remoroza C; Cord-Landwehr S; Leijdekkers AG; Moerschbacher BM; Schols HA; Gruppen H
    Carbohydr Polym; 2012 Sep; 90(1):41-8. PubMed ID: 24751008
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization and in vitro expression patterns of extracellular degradative enzymes from non-pathogenic binucleate Rhizoctonia AG-G.
    Machinandiarena MF; Wolski EA; Barrera V; Daleo GR; Andreu AB
    Mycopathologia; 2005 Apr; 159(3):441-8. PubMed ID: 15883731
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Xylanolytic enzymes from fungi and bacteria.
    Sunna A; Antranikian G
    Crit Rev Biotechnol; 1997; 17(1):39-67. PubMed ID: 9118232
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intraspecific variation of Rhizoctonia solani AG 3 isolates recovered from potato fields in Central Iran and South Australia.
    Balali GR; Neate SM; Kasalkheh AM; Stodart BJ; Melanson DL; Scott ES
    Mycopathologia; 2007 Feb; 163(2):105-15. PubMed ID: 17245557
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pectate hydrolases of parsley (Petroselinum crispum) roots.
    Flodrová D; Dzúrovä M; Lisková D; Mohand FA; Mislovicová D; Malovícová A; Voburka Z; Omelková J; Stratilová E
    Z Naturforsch C J Biosci; 2007; 62(5-6):382-8. PubMed ID: 17708444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.