These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1165790)

  • 1. Nitrosobenzene-induced ferrihemoglobin formation in Japanese quail erythrocytes. The significance of ferrihemoglobin reduction.
    Blaauboer BJ; van Holsteijn CW; Wit JG
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 289(2):127-35. PubMed ID: 1165790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrihemoglobin formation by monohydroxy aniline derivatives in erythrocytes of some avian species in comparison with mammals.
    Blaauboer BJ; van Holsteijn CW; van Holsteijn CW; Wit JG; Wit JG
    Naunyn Schmiedebergs Arch Pharmacol; 1976; 292(3):255-8. PubMed ID: 940603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical processes involved in ferrihemoglobin formation by monohydroxyaniline derivatives in erythrocytes of birds and mammals.
    Blaauboer BJ; van Holsteijn CW; Wit JG
    Comp Biochem Physiol C Comp Pharmacol; 1979; 62C(2):199-203. PubMed ID: 37027
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of phenylhydroxylamine and aminophenols in Japanese quail in vivo.
    Blaauboer BJ; van Holsteijn CW; Wit JG
    Xenobiotica; 1980; 10(7-8):495-8. PubMed ID: 7470247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH-ferrihemoglobin reductase in avian erythrocytes.
    van Iersel AA; Blaauboer BJ
    Comp Biochem Physiol B; 1985; 81(4):1027-31. PubMed ID: 4042621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative degradation of haemoglobin by nitrosobenzene in the erythrocyte.
    Hirota K; Itano HA; Vedvick TS
    Biochem J; 1978 Sep; 174(3):693-7. PubMed ID: 728080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the phenacetin metabolite 4-nitrosophenetol on the glutathione status and the transport of glutathione S-conjugates in human red cells.
    Gallemann D; Eyer P
    Biol Chem Hoppe Seyler; 1993 Jan; 374(1):51-60. PubMed ID: 8439397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of nitrosobenzene in the red cell and the role of glutathione.
    Eyer P; Lierheimer E
    Xenobiotica; 1980; 10(7-8):517-26. PubMed ID: 6893778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral blood changes of the Japanese quail Coturnix coturnix japonica following repeated small doses of trichlorfon.
    Gromysz-Kałkowska K; Szubartowska E; Sulikowska J; Trocewicz K
    Bull Environ Contam Toxicol; 1985 Dec; 35(6):757-66. PubMed ID: 4074943
    [No Abstract]   [Full Text] [Related]  

  • 10. Aniline-, phenylhydroxylamine-, nitrosobenzene-, and nitrobenzene-induced hemoglobin thiyl free radical formation in vivo and in vitro.
    Maples KR; Eyer P; Mason RP
    Mol Pharmacol; 1990 Feb; 37(2):311-8. PubMed ID: 2154677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haematological changes in male and female pharaoh quails (Coturnix coturnix Pharaoh) after Ekatin intoxication.
    Gromysz-Kałkowska K; Szubartowska E
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 85(1):41-8. PubMed ID: 2877803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Kinetics of hemoglobin formation. IV. Formation of hemoglobin within erythrocytes by phenylhydroxylamine and nitrosobenzene in vitro].
    KIESE M; REINWEIN D; WALLER HD
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1950; 210(4-5):393-8. PubMed ID: 14777498
    [No Abstract]   [Full Text] [Related]  

  • 13. Microsomal N-oxidation of dapson as a cause of methemoglobin formation in human red cells.
    Cucinell SA; Israili ZH; Dayton PG
    Am J Trop Med Hyg; 1972 May; 21(3):322-31. PubMed ID: 4554497
    [No Abstract]   [Full Text] [Related]  

  • 14. Curcumin inhibits nitrite-induced methemoglobin formation.
    Unnikrishnan MK; Rao MN
    FEBS Lett; 1992 Apr; 301(2):195-6. PubMed ID: 1314741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hematology of neonatal Japanese quail.
    Hamrick PE; McRee DI; Zinkl JG; Thaxton P; Parkhurst CR
    Lab Anim Sci; 1975 Aug; 25(4):495-9. PubMed ID: 1152424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of ferrihemoglobin formation by some reducing agents, and the role of hydrogen peroxide.
    Eyer P; Hertle H; Kiese M; Klein G
    Mol Pharmacol; 1975 May; 11(3):326-34. PubMed ID: 1143282
    [No Abstract]   [Full Text] [Related]  

  • 17. Reactions of the Wurster's red radical cation with hemoglobin and glutathione during the cooxidation of N,N-dimethyl-p-phenylenediamine [correction of phenlenediamine] and oxyhemoglobin in human red cells.
    Störle C; Eyer P
    Chem Biol Interact; 1992 Aug; 83(3):271-91. PubMed ID: 1516152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative aspects of methemoglobin formation and reduction in opossum (Didelphis virginiana) and human erythrocytes.
    Bethlenfalvay NC; Waterman MR; Lima JE; Waldrup T
    Comp Biochem Physiol A Comp Physiol; 1983; 75(4):635-9. PubMed ID: 6137318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematology of Japanese quail selected for high or low serum corticosterone responses to complex stressors.
    Gildersleeve RP; Satterlee DG; Scott TR; McRee DI; Parkhurst CR; Cook ME
    Comp Biochem Physiol A Comp Physiol; 1987; 86(3):569-73. PubMed ID: 2881699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leukopenia in neonatal Japanese quail.
    Hamrick PE; Zinkl JG; McRee DI; Thaxton P; Parkhurst CR
    Poult Sci; 1975 Jan; 54(1):312-4. PubMed ID: 1135136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.