These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1165790)

  • 21. Studies on blood groups in the Japanese quail: the common antigens possessed by red blood cells and leukocytes, and their inheritance.
    Katoh H; Wakasugi N
    Immunogenetics; 1981; 13(1-2):109-14. PubMed ID: 7228152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The enzymatic reduction of ferrihemoglobin. I. The reduction of ferrihemoglobin in red blood cells and hemolysates.
    Hegesh E; Avron M
    Biochim Biophys Acta; 1967 Sep; 146(1):91-101. PubMed ID: 4293968
    [No Abstract]   [Full Text] [Related]  

  • 23. [Extraerythrocytic influences of phenylhydroxylamine and nitrosobenzene on hemoglobin formation in the red cells].
    KIESE M; UEHLEKE H; WEGER N
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1961; 242():130-3. PubMed ID: 14455839
    [No Abstract]   [Full Text] [Related]  

  • 24. [Reduction of ferrihemoglobin by glucide utilization in the erythrocytes of normal and methemoglobinemic subjects].
    MISSALE G; COCCONI G; DELINDATI F
    Rass Fisiopatol Clin Ter; 1961 Feb; 33():121-36. PubMed ID: 14474579
    [No Abstract]   [Full Text] [Related]  

  • 25. [Extra-erythrocyte influences on hemiglobin formation by phenylhydroxylamine and nitrosobenzene in red cells].
    KIESE M; UEHLEKE H; WEGER N
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1961; 242():130-3. PubMed ID: 14455838
    [No Abstract]   [Full Text] [Related]  

  • 26. Reticulocyte numbers in Japanese quail chicks.
    Gildersleeve RP; Bryan TE; Keel RA; Keene TA; Swann GS; Parkhurst CR; McRee DI
    Comp Biochem Physiol A Comp Physiol; 1987; 86(3):575-9. PubMed ID: 2881700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of phlebotomy on reticulocyte numbers in Japanese Quail.
    Gildersleeve RP; Phelps PV; Thaxton JP; McRee DI
    Poult Sci; 1985 Oct; 64(10):1990-5. PubMed ID: 4070133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Kinetics of hemoglobin formation. V. Determination of nitrosobenzene in the erythrocytes during formation of hemoglobin by phenylhydroxylamine].
    DANNENBERG H; KIESE M
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1950; 211(1):102-14. PubMed ID: 14777521
    [No Abstract]   [Full Text] [Related]  

  • 29. [H2O2-formation during hemoglobin oxidation by phenylhydroxylamine in erythrocytes].
    Ellederová D; Wagner J; Kácl K
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1968; 260(2):109-10. PubMed ID: 4239149
    [No Abstract]   [Full Text] [Related]  

  • 30. Methemoglobin formation in the blood of Japanese subjects and mice suffering from acatalasemia in response to methemoglobin inducers.
    Ogata M; Ishii K; Ioku N; Meguro T
    Physiol Chem Phys Med NMR; 1990; 22(3):125-34. PubMed ID: 2093192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation of nitrosobenzene, phenylhydroxylamine, and aniline in the isolated perfused rat liver.
    Eyer P; Kampffmeyer H; Maister H; Rösch-Oehme E
    Xenobiotica; 1980; 10(7-8):499-516. PubMed ID: 6893777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of methemoglobin in oxidative degradation of hemoglobin.
    BEUTLER E; BALUDA MC
    Acta Haematol; 1962; 27():321-33. PubMed ID: 13868714
    [No Abstract]   [Full Text] [Related]  

  • 33. Stability of hemoglobin gene frequency in randombred chicken and quail populations.
    Washburn KW; Maeda Y; Marks HL
    Poult Sci; 1982 Mar; 61(3):578-80. PubMed ID: 7088810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Limiting factors of methemoglobin formation through phenylhydroxylamine in hemolysates of different animal species].
    Uehleke H; Burger A; Wagner J
    Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):152-8. PubMed ID: 4383434
    [No Abstract]   [Full Text] [Related]  

  • 35. The rate of methemoglobin reduction in red cells of moderately bled rabbits.
    JALAVISTO E; PITKANEN A; SELONEN A; SOLANTERA L
    Acta Physiol Scand; 1959 Jun; 46():257-72. PubMed ID: 14406566
    [No Abstract]   [Full Text] [Related]  

  • 36. Antimalarial quinones: redox potential dependence of methemoglobin formation and heme release in erythrocytes.
    Lopez-Shirley K; Zhang F; Gosser D; Scott M; Meshnick SR
    J Lab Clin Med; 1994 Jan; 123(1):126-30. PubMed ID: 8288952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in the ferrihemoglobin-forming capabilities and carcinogenicities between monocyclic and polycyclic N-acylarylamines and their derivatives.
    Lenk W; Sterzl H
    Q Rev Drug Metab Drug Interact; 1982; 4(2-3):171-236. PubMed ID: 6765364
    [No Abstract]   [Full Text] [Related]  

  • 38. Ascorbic acid enhances the occurrence of copper-induced methemoglobin formation in normal human erythrocytes in vitro.
    Calabrese EJ; Moore GS; McCarthy MS
    Bull Environ Contam Toxicol; 1982 Dec; 29(6):704-10. PubMed ID: 7159780
    [No Abstract]   [Full Text] [Related]  

  • 39. [Metabolic effects of phenylhydroxylamine and nitrosobenzene in the erythrocytes].
    WALLER HD
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1950; 212(1-2):103. PubMed ID: 14811421
    [No Abstract]   [Full Text] [Related]  

  • 40. [Kinetics of hemoglobin formation. VII. Erythrocyte metabolism during hemoglobin formation in the phenylhydroxylamine-nitrosobenzene cycle].
    KIESE M; WALLER HD
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1950; 211(4):345-61. PubMed ID: 14790715
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.