These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 11665489)
1. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Claiborne A; Mallett TC; Yeh JI; Luba J; Parsonage D Adv Protein Chem; 2001; 58():215-76. PubMed ID: 11665489 [TBL] [Abstract][Full Text] [Related]
2. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Claiborne A; Yeh JI; Mallett TC; Luba J; Crane EJ; Charrier V; Parsonage D Biochemistry; 1999 Nov; 38(47):15407-16. PubMed ID: 10569923 [TBL] [Abstract][Full Text] [Related]
3. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. Claiborne A; Miller H; Parsonage D; Ross RP FASEB J; 1993 Dec; 7(15):1483-90. PubMed ID: 8262333 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the kinetic and redox properties of NADH peroxidase C42S and C42A mutants lacking the cysteine-sulfenic acid redox center. Parsonage D; Claiborne A Biochemistry; 1995 Jan; 34(2):435-41. PubMed ID: 7819235 [TBL] [Abstract][Full Text] [Related]
5. Possibilities and pitfalls in quantifying the extent of cysteine sulfenic acid modification of specific proteins within complex biofluids. Rehder DS; Borges CR BMC Biochem; 2010 Jul; 11():25. PubMed ID: 20594348 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite. Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891 [TBL] [Abstract][Full Text] [Related]
7. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies. Heppner DE; Janssen-Heininger YMW; van der Vliet A Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370 [TBL] [Abstract][Full Text] [Related]
8. 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase. Crane EJ; Vervoort J; Claiborne A Biochemistry; 1997 Jul; 36(28):8611-8. PubMed ID: 9214307 [TBL] [Abstract][Full Text] [Related]
9. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo. Takanishi CL; Ma LH; Wood MJ Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457 [TBL] [Abstract][Full Text] [Related]
10. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Rehder DS; Borges CR Biochemistry; 2010 Sep; 49(35):7748-55. PubMed ID: 20712299 [TBL] [Abstract][Full Text] [Related]
11. Cysteine perthiosulfenic acid (Cys-SSOH): A novel intermediate in thiol-based redox signaling? Heppner DE; Hristova M; Ida T; Mijuskovic A; Dustin CM; Bogdándi V; Fukuto JM; Dick TP; Nagy P; Li J; Akaike T; van der Vliet A Redox Biol; 2018 Apr; 14():379-385. PubMed ID: 29054072 [TBL] [Abstract][Full Text] [Related]
12. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Salsbury FR; Knutson ST; Poole LB; Fetrow JS Protein Sci; 2008 Feb; 17(2):299-312. PubMed ID: 18227433 [TBL] [Abstract][Full Text] [Related]
13. Capturing a sulfenic acid with arylboronic acids and benzoxaborole. Liu CT; Benkovic SJ J Am Chem Soc; 2013 Oct; 135(39):14544-7. PubMed ID: 24050501 [TBL] [Abstract][Full Text] [Related]
14. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. Netto LES; Machado LESF FEBS J; 2022 Sep; 289(18):5480-5504. PubMed ID: 35490402 [TBL] [Abstract][Full Text] [Related]
15. Protein sulfenic acids in redox signaling. Poole LB; Karplus PA; Claiborne A Annu Rev Pharmacol Toxicol; 2004; 44():325-47. PubMed ID: 14744249 [TBL] [Abstract][Full Text] [Related]
16. Conformers of cysteine and cysteine sulfenic acid and mechanisms of the reaction of cysteine sulfenic acid with 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Freeman F; Adesina IT; La JL; Lee JY; Poplawski AA J Phys Chem B; 2013 Dec; 117(50):16000-12. PubMed ID: 24274619 [TBL] [Abstract][Full Text] [Related]
17. Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility. Shi Y; Carroll KS Redox Biol; 2021 Oct; 46():102072. PubMed ID: 34298464 [TBL] [Abstract][Full Text] [Related]
18. Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Ellis HR; Poole LB Biochemistry; 1997 Dec; 36(48):15013-8. PubMed ID: 9398227 [TBL] [Abstract][Full Text] [Related]
19. Relative quantification of sulfenic acids in plasma proteins using differential labelling and mass spectrometry coupled with 473 nm photo-dissociation analysis: A multiplexed approach applied to an Alzheimer's disease cohort. Guillaubez JV; Pitrat D; Bretonnière Y; Lemoine J; Girod M Talanta; 2022 Dec; 250():123745. PubMed ID: 35870285 [TBL] [Abstract][Full Text] [Related]
20. The redox biochemistry of protein sulfenylation and sulfinylation. Lo Conte M; Carroll KS J Biol Chem; 2013 Sep; 288(37):26480-8. PubMed ID: 23861405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]