These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11665562)

  • 1. Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors.
    Javitch JA; Shi L; Liapakis G
    Methods Enzymol; 2002; 343():137-56. PubMed ID: 11665562
    [No Abstract]   [Full Text] [Related]  

  • 2. N-linked carbohydrates on G protein-coupled receptors: mapping sites of attachment and determining functional roles.
    Davis DP; Segaloff DL
    Methods Enzymol; 2002; 343():200-12. PubMed ID: 11665568
    [No Abstract]   [Full Text] [Related]  

  • 3. Substituted-cysteine accessibility method.
    Karlin A; Akabas MH
    Methods Enzymol; 1998; 293():123-45. PubMed ID: 9711606
    [No Abstract]   [Full Text] [Related]  

  • 4. The fourth transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle.
    Javitch JA; Shi L; Simpson MM; Chen J; Chiappa V; Visiers I; Weinstein H; Ballesteros JA
    Biochemistry; 2000 Oct; 39(40):12190-9. PubMed ID: 11015197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro modification of substituted cysteines as tool to study receptor functionality and structure-activity relationships.
    Rathmann D; Pedragosa-Badia X; Beck-Sickinger AG
    Anal Biochem; 2013 Aug; 439(2):173-83. PubMed ID: 23624320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylation of G-protein-coupled receptors for hormones central to normal reproductive functioning: its occurrence and role.
    Wheatley M; Hawtin SR
    Hum Reprod Update; 1999; 5(4):356-64. PubMed ID: 10465525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic and aromatic microdomains within the binding-site crevice of the D2 receptor: contributions of the second membrane-spanning segment.
    Javitch JA; Ballesteros JA; Chen J; Chiappa V; Simpson MM
    Biochemistry; 1999 Jun; 38(25):7961-8. PubMed ID: 10387039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine Modification: Probing Channel Structure, Function and Conformational Change.
    Akabas MH
    Adv Exp Med Biol; 2015; 869():25-54. PubMed ID: 26381939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessibility of cysteine residues substituted into the cytoplasmic regions of the alpha-factor receptor identifies the intracellular residues that are available for G protein interaction.
    Choi Y; Konopka JB
    Biochemistry; 2006 Dec; 45(51):15310-7. PubMed ID: 17176053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Crystal Structure of the Fifth Scavenger Receptor Cysteine-Rich Domain of Porcine CD163 Reveals an Important Residue Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection.
    Ma H; Jiang L; Qiao S; Zhi Y; Chen XX; Yang Y; Huang X; Huang M; Li R; Zhang GP
    J Virol; 2017 Feb; 91(3):. PubMed ID: 27881657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing CFTR channel structure and function using the substituted-cysteine-accessibility method.
    Akabas MH
    Methods Mol Med; 2002; 70():159-74. PubMed ID: 11917520
    [No Abstract]   [Full Text] [Related]  

  • 12. Mapping of Membrane Protein Topology by Substituted Cysteine Accessibility Method (SCAM™).
    Bogdanov M
    Methods Mol Biol; 2017; 1615():105-128. PubMed ID: 28667607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of residues involved in homodimer formation located within a β-strand region of the N-terminus of a Yeast G protein-coupled receptor.
    Uddin MS; Kim H; Deyo A; Naider F; Becker JM
    J Recept Signal Transduct Res; 2012 Apr; 32(2):65-75. PubMed ID: 22268895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The substituted-cysteine accessibility method (SCAM) to elucidate membrane protein structure.
    Liapakis G; Simpson MM; Javitch JA
    Curr Protoc Neurosci; 2001 May; Chapter 4():Unit 4.15. PubMed ID: 18428478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies.
    Careaga CL; Falke JJ
    Biophys J; 1992 Apr; 62(1):209-16; discussion 217-9. PubMed ID: 1318100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The G protein-coupled receptor family and one of its members, the TSH receptor.
    Vassart G; Desarnaud F; Duprez L; Eggerickx D; Labbé O; Libert F; Mollereau C; Parma J; Paschke R; Tonacchera M
    Ann N Y Acad Sci; 1995 Sep; 766():23-30. PubMed ID: 7486665
    [No Abstract]   [Full Text] [Related]  

  • 17. The first transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle.
    Shi L; Simpson MM; Ballesteros JA; Javitch JA
    Biochemistry; 2001 Oct; 40(41):12339-48. PubMed ID: 11591153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of membrane-integral receptors.
    Saenger W; Haucke V
    Eur J Cell Biol; 2012 Apr; 91(4):225. PubMed ID: 22104444
    [No Abstract]   [Full Text] [Related]  

  • 19. The conserved cysteine 7.38 residue is differentially accessible in the binding-site crevices of the mu, delta, and kappa opioid receptors.
    Xu W; Chen C; Huang P; Li J; de Riel JK; Javitch JA; Liu-Chen LY
    Biochemistry; 2000 Nov; 39(45):13904-15. PubMed ID: 11076532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling G-protein-coupled receptors for drug design.
    Flower DR
    Biochim Biophys Acta; 1999 Nov; 1422(3):207-34. PubMed ID: 10548717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.