These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize. Molto GA; Gonzalez HH; Resnik SL; Pereyra Gonzalez A Food Addit Contam; 1997 Apr; 14(3):263-8. PubMed ID: 9135723 [TBL] [Abstract][Full Text] [Related]
7. Trichothecenes and zearalenone production by Fusarium equiseti and Fusarium semitectum species isolated from Argentinean soybean. Barros G; Zanon MS; Palazzini JM; Haidukowski M; Pascale M; Chulze S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(9):1436-42. PubMed ID: 22830612 [TBL] [Abstract][Full Text] [Related]
8. Verification of the effectiveness of SCAR (sequence characterized amplified region) primers for the identification of Polish strains of Fusarium culmorum and their potential ability to produce B-trichothecenes and zearalenone. Baturo-Ciesniewska A; Suchorzynska M Int J Food Microbiol; 2011 Aug; 148(3):168-76. PubMed ID: 21664712 [TBL] [Abstract][Full Text] [Related]
9. Trichothecene and beauvericin mycotoxin production and genetic variability in Fusarium poae isolated from wheat kernels from northern Italy. Somma S; Alvarez C; Ricci V; Ferracane L; Ritieni A; Logrieco A; Moretti A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):729-37. PubMed ID: 20204912 [TBL] [Abstract][Full Text] [Related]
10. Incidence of zearalenone producing strains of Fusarium in barley seeds. Hacking A; Rosser WR; Dervish MT Ann Nutr Aliment; 1977; 31(4-6):557-62. PubMed ID: 613922 [TBL] [Abstract][Full Text] [Related]
11. Production of trichothecenes and zearalenone by Fusarium species isolated from wheat. Chełkowski J; Visconti A; Mańka M Nahrung; 1984; 28(5):493-6. PubMed ID: 6237263 [TBL] [Abstract][Full Text] [Related]
12. [Occurrence of Fusarium strains and their mycotoxins on corn silage. 6. Formation of zearalenone and trichothecenes (type A) by indigenous Fusarium isolates]. Lepom P; Knabe O; Baath H Arch Tierernahr; 1990 Sep; 40(9):871-83. PubMed ID: 2151110 [TBL] [Abstract][Full Text] [Related]
13. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Hope R; Aldred D; Magan N Lett Appl Microbiol; 2005; 40(4):295-300. PubMed ID: 15752221 [TBL] [Abstract][Full Text] [Related]
14. Production of trichothecene mycotoxins by Fusarium graminearum and Fusarium culmorum on barley and wheat. Mirocha CJ; Xie W; Xu Y; Wilcoxson RD; Woodward RP; Etebarian RH; Behele G Mycopathologia; 1994 Oct; 128(1):19-23. PubMed ID: 7708088 [TBL] [Abstract][Full Text] [Related]
15. Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Sydenham EW; Marasas WF; Thiel PG; Shephard GS; Nieuwenhuis JJ Food Addit Contam; 1991; 8(1):31-41. PubMed ID: 1826664 [TBL] [Abstract][Full Text] [Related]
16. Reduction of the Podgórska-Kryszczuk I; Solarska E; Kordowska-Wiater M Molecules; 2022 Feb; 27(5):. PubMed ID: 35268678 [TBL] [Abstract][Full Text] [Related]
17. Mycological analysis of cereal samples and screening of Fusarium strains' ability to form deoxynivalenole (DON) and zearalenone (ZEA) mycotoxins--a pilot study. Kłyszejko A; Kubus Z; Zakowska Z Pol J Microbiol; 2005; 54 Suppl():21-5. PubMed ID: 16457376 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from Southern Europe. Marín P; Moretti A; Ritieni A; Jurado M; Vázquez C; González-Jaén MT Food Microbiol; 2012 Sep; 31(2):229-37. PubMed ID: 22608228 [TBL] [Abstract][Full Text] [Related]
19. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium culmorum as Compared with Wheat. Góral T; Wiśniewska H; Ochodzki P; Walentyn-Góral D Toxins (Basel); 2016 Oct; 8(10):. PubMed ID: 27763547 [TBL] [Abstract][Full Text] [Related]
20. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Pasquali M; Giraud F; Brochot C; Cocco E; Hoffmann L; Bohn T Int J Food Microbiol; 2010 Feb; 137(2-3):246-53. PubMed ID: 20004994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]