These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rapid neural coding in the retina with relative spike latencies. Gollisch T; Meister M Science; 2008 Feb; 319(5866):1108-11. PubMed ID: 18292344 [TBL] [Abstract][Full Text] [Related]
3. Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy. Tokutake Y; Freed MA Eur J Neurosci; 2008 Sep; 28(5):914-23. PubMed ID: 18691326 [TBL] [Abstract][Full Text] [Related]
4. A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Kerschensteiner D; Wong RO Neuron; 2008 Jun; 58(6):851-8. PubMed ID: 18579076 [TBL] [Abstract][Full Text] [Related]
5. Information processing in the primate retina: circuitry and coding. Field GD; Chichilnisky EJ Annu Rev Neurosci; 2007; 30():1-30. PubMed ID: 17335403 [TBL] [Abstract][Full Text] [Related]
6. Signals and noise in an inhibitory interneuron diverge to control activity in nearby retinal ganglion cells. Murphy GJ; Rieke F Nat Neurosci; 2008 Mar; 11(3):318-26. PubMed ID: 18223648 [TBL] [Abstract][Full Text] [Related]
7. Decoding visual information from a population of retinal ganglion cells. Warland DK; Reinagel P; Meister M J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386 [TBL] [Abstract][Full Text] [Related]
9. The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. Thiel A; Greschner M; Ammermüller J J Comput Neurosci; 2006 Oct; 21(2):131-51. PubMed ID: 16732489 [TBL] [Abstract][Full Text] [Related]
10. Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Murphy GJ; Rieke F Neuron; 2006 Nov; 52(3):511-24. PubMed ID: 17088216 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic ON responses of the retinal OFF pathway are suppressed by the ON pathway. Rentería RC; Tian N; Cang J; Nakanishi S; Stryker MP; Copenhagen DR J Neurosci; 2006 Nov; 26(46):11857-69. PubMed ID: 17108159 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of retinal spikes in driving cortical responses. Kara P; Reid RC J Neurosci; 2003 Sep; 23(24):8547-57. PubMed ID: 13679424 [TBL] [Abstract][Full Text] [Related]
13. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. Vidne M; Ahmadian Y; Shlens J; Pillow JW; Kulkarni J; Litke AM; Chichilnisky EJ; Simoncelli E; Paninski L J Comput Neurosci; 2012 Aug; 33(1):97-121. PubMed ID: 22203465 [TBL] [Abstract][Full Text] [Related]
14. Transmission of spike trains at the retinogeniculate synapse. Sincich LC; Adams DL; Economides JR; Horton JC J Neurosci; 2007 Mar; 27(10):2683-92. PubMed ID: 17344406 [TBL] [Abstract][Full Text] [Related]
15. The potential coding utility of intercell cross-correlations in the retina. Levine MW Biol Cybern; 2004 Sep; 91(3):182-7. PubMed ID: 15372240 [TBL] [Abstract][Full Text] [Related]
16. High Accuracy Decoding of Dynamical Motion from a Large Retinal Population. Marre O; Botella-Soler V; Simmons KD; Mora T; Tkačik G; Berry MJ PLoS Comput Biol; 2015 Jul; 11(7):e1004304. PubMed ID: 26132103 [TBL] [Abstract][Full Text] [Related]
17. Permanent functional reorganization of retinal circuits induced by early long-term visual deprivation. Di Marco S; Nguyen VA; Bisti S; Protti DA J Neurosci; 2009 Oct; 29(43):13691-701. PubMed ID: 19864581 [TBL] [Abstract][Full Text] [Related]
18. Optic nerve signals in a neuromorphic chip II: Testing and results. Zaghloul KA; Boahen K IEEE Trans Biomed Eng; 2004 Apr; 51(4):667-75. PubMed ID: 15072221 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of electrical stimulation of retinal ganglion cells with temporal patterns resembling light-evoked spike trains. Wong RC; Garrett DJ; Grayden DB; Ibbotson MR; Cloherty SL Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1707-10. PubMed ID: 25570304 [TBL] [Abstract][Full Text] [Related]