These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11666711)

  • 1. Solvent Cage Effects in Organocobalt Corrinoid Chemistry: Thermal Homolysis of alpha- and beta-(Cyanomethyl)cobinamides(1).
    Brown KL; Zhou L
    Inorg Chem; 1996 Aug; 35(17):5032-5039. PubMed ID: 11666711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diastereomeric Control in the Formation of Carbon-Cobalt Bonds in Organocobalt Corrinoids: Reactions of Cobalt(II) Corrinoids with Organic Hydroperoxides(1).
    Brown KL; Zhao D; Cheng S; Zou X
    Inorg Chem; 1997 Apr; 36(9):1764-1771. PubMed ID: 11669778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermolysis of coenzymes B12 at physiological temperatures: activation parameters for cobalt-carbon bond homolysis and a quantitative analysis of the perturbation of the homolysis equilibrium by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Brown KL; Zou X
    J Inorg Biochem; 1999; 77(3-4):185-95. PubMed ID: 10643658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure and thermolysis of Cobeta-5'-deoxyadenosylimidazolylcobamide, a coenzyme B12 analogue with an imidazole axial nucleoside.
    Brown KL; Zou X; Banka RR; Perry CB; Marques HM
    Inorg Chem; 2004 Dec; 43(25):8130-42. PubMed ID: 15578853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and kinetic studies on carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: the importance of entropy in catalysis.
    Licht SS; Lawrence CC; Stubbe J
    Biochemistry; 1999 Jan; 38(4):1234-42. PubMed ID: 9930983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Side Chain Entropy and the Activation of Organocobalamins for Carbon-Cobalt Bond Homolysis: Synthesis, Characterization, and Thermolysis of the Neopentyl Derivative of a Unique Cobalamin Analog Lacking a c Side Chain.
    Brown KL; Cheng S; Zubkowski JD; Valente EJ
    Inorg Chem; 1997 Apr; 36(9):1772-1781. PubMed ID: 11669779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylcobalamin's full- vs. "half"-strength cobalt-carbon sigma bonds and bond dissociation enthalpies: A >10(15) Co-CH3 homolysis rate enhancement following one-antibonding-electron reduction of methlycobalamin.
    Martin BD; Finke RG
    J Am Chem Soc; 1992 Jan; 114(2):585-92. PubMed ID: 20000783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermolysis of Neopentylcobalamin Analogs Complexed to Haptocorrin: Side Chain Entropy and Activation of Organocobalamins for Carbon-Cobalt Bond Homolysis.
    Brown KL; Evans DR; Cheng S; Jacobsen DW
    Inorg Chem; 1996 Jan; 35(1):217-222. PubMed ID: 11666187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic and kinetic characterization of Co-C bond homolysis catalyzed by coenzyme B(12)-dependent methylmalonyl-CoA mutase.
    Chowdhury S; Banerjee R
    Biochemistry; 2000 Jul; 39(27):7998-8006. PubMed ID: 10891081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and thermodynamic characterization of Co(II)-substrate radical pair formation in coenzyme B12-dependent ethanolamine ammonia-lyase in a cryosolvent system by using time-resolved, full-spectrum continuous-wave electron paramagnetic resonance spectroscopy.
    Wang M; Warncke K
    J Am Chem Soc; 2008 Apr; 130(14):4846-58. PubMed ID: 18341340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of the interconversions between C- and N-bound transition metal alpha-cyanocarbanions.
    Naota T; Tannna A; Kamuro S; Murahashi S
    J Am Chem Soc; 2002 Jun; 124(24):6842-3. PubMed ID: 12059202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations.
    Troganis AN; Sicilia E; Barbarossou K; Gerothanassis IP; Russo N
    J Phys Chem A; 2005 Dec; 109(51):11878-84. PubMed ID: 16366639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can O=NOOH undergo homolysis?
    Koppenol WH; Kissner R
    Chem Res Toxicol; 1998 Feb; 11(2):87-90. PubMed ID: 9511898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding mechanism of an SH3 domain studied by NMR and ITC.
    Demers JP; Mittermaier A
    J Am Chem Soc; 2009 Apr; 131(12):4355-67. PubMed ID: 19267471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Free Radical-Promoted Isomerization of alpha- and beta-Alkylcobinamides(1).
    Zou X; Zhao D; Brown KL
    Inorg Chem; 1996 Jun; 35(13):3815-3820. PubMed ID: 11666569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical cage effects in the photochemical degradation of polymers: effect of radical size and mass on the cage recombination efficiency of radical cage pairs generated photochemically from the (CpCH2CH2N(CH3)C(O)(CH2)nCH3)2Mo2(CO)6 (n = 3, 8, 18) complexes.
    Schutte E; Weakley TJ; Tyler DR
    J Am Chem Soc; 2003 Aug; 125(34):10319-26. PubMed ID: 12926956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of the Co(II)-substrate radical pair catalytic intermediate in coenzyme B12-dependent ethanolamine ammonia-lyase in frozen aqueous solution from 190 to 217 K.
    Zhu C; Warncke K
    Biophys J; 2008 Dec; 95(12):5890-900. PubMed ID: 18805934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-dependent cage dynamics of small nonpolar radicals: lessons from the photodissociation and geminate recombination of alkylcobalamins.
    Stickrath AB; Carroll EC; Dai X; Harris DA; Rury A; Smith B; Tang KC; Wert J; Sension RJ
    J Phys Chem A; 2009 Jul; 113(30):8513-22. PubMed ID: 19585970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.