These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11667603)

  • 1. Interconversions of Phenylcarbene, Cycloheptatetraene, Fulvenallene, and Benzocyclopropene. A Theoretical Study of the C(7)H(6) Energy Surface.
    Wong MW; Wentrup C
    J Org Chem; 1996 Oct; 61(20):7022-7029. PubMed ID: 11667603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rearrangements of C(7)H(6) Isomers: Computational Studies of the Interconversions of Bicyclo[3.2.0]hepta-1,3,6-triene, Bicyclo[3.2.0]hepta-3,6-diene-2-ylidene, Bicyclo[3.2.0]hepta-2,3,6-triene, and Cyclohepta-1,2,4,6-tetraene.
    Patterson EV; McMahon RJ
    J Org Chem; 1997 Jun; 62(13):4398-4405. PubMed ID: 11671766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbene Rearrangements Unsurpassed: Details of the C(7)H(6) Potential Energy Surface Revealed.
    Schreiner PR; Karney WL; von Ragué Schleyer P; Borden WT; Hamilton TP; Schaefer III HF
    J Org Chem; 1996 Oct; 61(20):7030-7039. PubMed ID: 11667604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent effects in the interconversion of phenylcarbene, bicyclo[4.1.0]hepta-2,4,6-triene, and 1,2,4,6-cycloheptatetraene.
    Geise CM; Hadad CM
    J Org Chem; 2002 Apr; 67(8):2532-40. PubMed ID: 11950298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet-triplet splittings and barriers to Wolff rearrangement for carbonyl carbenes.
    Scott AP; Platz MS; Radom L
    J Am Chem Soc; 2001 Jun; 123(25):6069-76. PubMed ID: 11414840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one to the ketonic tautomer of phenol. Computational evidence for the formation of a diradical rather than a zwitterionic intermediate.
    Gómez I; Olivella S; Reguero M; Riera A; Solé A
    J Am Chem Soc; 2002 Dec; 124(51):15375-84. PubMed ID: 12487613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersystem crossings of the triplet and singlet States in cobalt and copper mononitrosyls.
    Uzunova EL
    J Phys Chem A; 2009 Oct; 113(42):11266-72. PubMed ID: 19788202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the reactivity on the c7h6 potential energy surface.
    Polino D; Famulari A; Cavallotti C
    J Phys Chem A; 2011 Jul; 115(27):7928-36. PubMed ID: 21630692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study of the rearrangement processes of energized CCCB and CCCAl.
    Wang T; Bowie JH
    Phys Chem Chem Phys; 2009 Sep; 11(35):7553-61. PubMed ID: 19950493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isomers of cyclo-heptasulfur and their coordination to Li(+): an ab initio molecular orbital study.
    Wong MW; Steudel Y; Steudel R
    Inorg Chem; 2005 Nov; 44(24):8908-15. PubMed ID: 16296846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rearrangements of Nitrile Imines: Ring Expansion of Benzonitrile Imines to Cycloheptatetraenes and Ring Closure to 3-Phenyl-3 H-diazirines.
    Bégué D; Dargelos A; Wentrup C
    J Org Chem; 2019 Jul; 84(13):8668-8673. PubMed ID: 31244156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile ketene-ketene and ketene-ketenimine rearrangements: a study of the 1,3-migration of alpha-substituents interconverting alpha-imidoylketenes and alpha-oxoketenimines, a pseudopericyclic reaction.
    Finnerty JJ; Wentrup C
    J Org Chem; 2004 Mar; 69(6):1909-18. PubMed ID: 15058936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A crossed molecular beams and ab initio study on the formation of C6H3 radicals. an interface between resonantly stabilized and aromatic radicals.
    Kaiser RI; Goswami M; Maksyutenko P; Zhang F; Kim YS; Landera A; Mebel AM
    J Phys Chem A; 2011 Sep; 115(37):10251-8. PubMed ID: 21823627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of singlet ground and low-lying electronic excited states of phosphaethyne and isophosphaethyne.
    Ingels JB; Turney JM; Richardson NA; Yamaguchi Y; Schaefer HF
    J Chem Phys; 2006 Sep; 125(10):104306. PubMed ID: 16999525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry and properties of cycloheptatetraene in the inner phase of a hemicarcerand.
    Warmuth R; Marvel MA
    Chemistry; 2001 Mar; 7(6):1209-20. PubMed ID: 11322547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The azulene-to-naphthalene rearrangement revisited: a DFT study of intramolecular and radical-promoted mechanisms.
    Alder RW; East SP; Harvey JN; Oakley MT
    J Am Chem Soc; 2003 May; 125(18):5375-87. PubMed ID: 12720451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations on the competition between association and reaction for C3H(+) + H2.
    Maluendes SA; McLean AD; Yamashita K; Herbst E
    J Chem Phys; 1993 Aug; 99(4):2812-20. PubMed ID: 11539504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ring walk of methylene groups in toluene radical cations. An extension of the toluene-cycloheptatriene rearrangement of aromatic radical cations. Theory and experiment.
    Grützmacher HF; Harting N
    Eur J Mass Spectrom (Chichester); 2003; 9(4):327-41. PubMed ID: 12939485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Carbenes and Cyclic Allenes Energetically Comparable to Experimentally Known 1-Azulenylcarbene.
    Roy T; Thimmakondu VS; Ghosal S
    ACS Omega; 2022 Aug; 7(34):30149-30160. PubMed ID: 36061723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the cyclopentadienyl + acetylene, fulvenallene + H, and 1-ethynylcyclopentadiene + H reactions.
    da Silva G; Cole JA; Bozzelli JW
    J Phys Chem A; 2010 Feb; 114(6):2275-83. PubMed ID: 20104927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.