These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11667661)

  • 21. ¹H NMR studies of starch-water interactions during microwave heating.
    Fan D; Ma S; Wang L; Zhao H; Zhao J; Zhang H; Chen W
    Carbohydr Polym; 2013 Sep; 97(2):406-12. PubMed ID: 23911464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon carbide as a heat-enhancing agent in microwave ablation: in vitro experiments.
    Isfort P; Penzkofer T; Pfaff E; Bruners P; Günther RW; Schmitz-Rode T; Mahnken AH
    Cardiovasc Intervent Radiol; 2011 Aug; 34(4):833-8. PubMed ID: 21104413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave Heating Outperforms Conventional Heating for a Thermal Reaction that Produces a Thermally Labile Product: Observations Consistent with Selective Microwave Heating.
    Duangkamol C; Batsomboon P; Stiegman AE; Dudley GB
    Chem Asian J; 2019 Aug; 14(15):2594-2597. PubMed ID: 31157510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry.
    Wang H; Tu ZC; Liu GX; Liu CM; Huang XQ; Xiao H
    Food Chem; 2013 Nov; 141(2):985-91. PubMed ID: 23790877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwave continuous sterilization of injection ampoules.
    Sasaki K; Honda W; Shimizu K; Iizima K; Ehara T; Okuzawa K; Miyake Y
    PDA J Pharm Sci Technol; 1996; 50(3):172-9. PubMed ID: 8696781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Migration testing of plastics and microwave-active materials for high-temperature food-use applications.
    Castle L; Jickells SM; Gilbert J; Harrison N
    Food Addit Contam; 1990; 7(6):779-96. PubMed ID: 2150378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids.
    Hong SM; Park JK; Lee YO
    Water Res; 2004 Mar; 38(6):1615-25. PubMed ID: 15016539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.
    Tasei Y; Yamakami T; Kawamura I; Fujito T; Ushida K; Sato M; Naito A
    J Magn Reson; 2015 May; 254():27-34. PubMed ID: 25771526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-line microwave blood warming of in-date human packed red blood cells.
    Pappas CG; Paddock H; Goyette P; Grabowy R; Connolly RJ; Schwaitzberg SD
    Crit Care Med; 1995 Jul; 23(7):1243-50. PubMed ID: 7600834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature distributions within zeolite precursor solutions in the presence of microwaves.
    Gharibeh M; Tompsett G; Lu F; Auerbach SM; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Sep; 113(37):12506-20. PubMed ID: 19469480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes.
    Glasnov TN; Kappe CO
    Chemistry; 2011 Oct; 17(43):11956-68. PubMed ID: 21932289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions.
    Reddy PM; Huang YS; Chen CT; Chang PC; Ho YP
    J Proteomics; 2013 Mar; 80():160-70. PubMed ID: 23352896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave enhanced stabilization of heavy metal sludge.
    Hsieh CH; Lo SL; Chiueh PT; Kuan WH; Chen CL
    J Hazard Mater; 2007 Jan; 139(1):160-6. PubMed ID: 16863678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether.
    Jarvis MW; Daily JW; Carstensen HH; Dean AM; Sharma S; Dayton DC; Robichaud DJ; Nimlos MR
    J Phys Chem A; 2011 Feb; 115(4):428-38. PubMed ID: 21218825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accelerated thermal reaction kinetics by indirect microwave heating of a microwave-transparent substrate.
    Tavakoli A; Stiegman AE; Dudley GB
    Phys Chem Chem Phys; 2022 Feb; 24(5):2794-2799. PubMed ID: 35040464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave-assisted solid-phase peptide synthesis at 60 degrees C: alternative conditions with low enantiomerization.
    Loffredo C; Assunção NA; Gerhardt J; Miranda MT
    J Pept Sci; 2009 Dec; 15(12):808-17. PubMed ID: 19827081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a tissue-mimicking thermochromic phantom for radiofrequency ablation.
    Mikhail AS; Negussie AH; Graham C; Mathew M; Wood BJ; Partanen A
    Med Phys; 2016 Jul; 43(7):4304. PubMed ID: 27370145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.