BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11668585)

  • 1. Elastic extension and jump of the flagellar nexin links: a theoretical mechanical cycle.
    Cibert C
    Cell Motil Cytoskeleton; 2001 Jul; 49(3):161-75. PubMed ID: 11668585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are the local adjustments of the relative spatial frequencies of the dynein arms and the beta-tubulin monomers involved in the regulation of the "9+2" axoneme?
    Cibert C
    J Theor Biol; 2008 Jul; 253(1):74-89. PubMed ID: 18405921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bending of the "9+2" axoneme analyzed by the finite element method.
    Cibert C; Toscano J; Pensée V; Bonnet G
    J Theor Biol; 2010 Jun; 264(4):1089-101. PubMed ID: 20380841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The geometric clutch as a working hypothesis for future research on cilia and flagella.
    Lindemann CB
    Ann N Y Acad Sci; 2007 Apr; 1101():477-93. PubMed ID: 17303832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolated flagellar outer arm dynein translocates brain microtubules in vitro.
    Paschal BM; King SM; Moss AG; Collins CA; Vallee RB; Witman GB
    Nature; 1987 Dec 17-23; 330(6149):672-4. PubMed ID: 2960903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the curvature of the flagellum involved in the apparent cooperativity of the dynein arms along the "9+2" axoneme?
    Cibert C; Ludu A
    J Theor Biol; 2010 Jul; 265(2):95-103. PubMed ID: 20399794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry drives the "deviated-bending" of the bi-tubular structures of the 9 + 2 axoneme in the flagellum.
    Cibert C; Heck JV
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):153-68. PubMed ID: 15368611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating.
    Dillon RH; Fauci LJ
    J Theor Biol; 2000 Dec; 207(3):415-30. PubMed ID: 11082310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of flagellar oscillation-bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm.
    Hayashi S; Shingyoji C
    J Cell Sci; 2008 Sep; 121(Pt 17):2833-43. PubMed ID: 18682495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum.
    Bozkurt HH; Woolley DM
    Cell Motil Cytoskeleton; 1993; 24(2):109-18. PubMed ID: 8440024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purealin blocks the sliding movement of sea urchin flagellar axonemes by selective inhibition of half the ATPase activity of axonemal dyneins.
    Fang YI; Yokota E; Mabuchi I; Nakamura H; Ohizumi Y
    Biochemistry; 1997 Dec; 36(50):15561-7. PubMed ID: 9398284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid dynamic models of flagellar and ciliary beating.
    Dillon RH; Fauci LJ; Omoto C; Yang X
    Ann N Y Acad Sci; 2007 Apr; 1101():494-505. PubMed ID: 17344534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of dynein-driven microtubule sliding by an axonemal kinase and phosphatase in Chlamydomonas flagella.
    Habermacher G; Sale WS
    Cell Motil Cytoskeleton; 1995; 32(2):106-9. PubMed ID: 8681389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric Clutch model version 3: the role of the inner and outer arm dyneins in the ciliary beat.
    Lindemann CB
    Cell Motil Cytoskeleton; 2002 Aug; 52(4):242-54. PubMed ID: 12112138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules.
    Lorch DP; Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2008 Jun; 65(6):487-94. PubMed ID: 18421707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of flagellar dynein by the axonemal central apparatus.
    Smith EF
    Cell Motil Cytoskeleton; 2002 May; 52(1):33-42. PubMed ID: 11977081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does axonemal dynein push, pull, or oscillate?
    Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2003 Dec; 56(4):237-44. PubMed ID: 14584026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flagellar and ciliary beating: the proven and the possible.
    Lindemann CB; Lesich KA
    J Cell Sci; 2010 Feb; 123(Pt 4):519-28. PubMed ID: 20145000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM; Kabututu ZP; Hill KL
    J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.