These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 11669122)
1. Crickets in space. Horn E; Boser S; Forster S; Riewe P; Sebastian C; Agricola H Acta Astronaut; 2001; 49(3-10):345-63. PubMed ID: 11669122 [TBL] [Abstract][Full Text] [Related]
2. Crickets in space: morphological, physiological and behavioral alterations induced by space flight and hypergravity. Horn E; Agricola H; Boser S; Forster S; Kamper G; Riewe P; Sebastian C Adv Space Res; 2002; 30(4):819-28. PubMed ID: 12530388 [TBL] [Abstract][Full Text] [Related]
3. The development of gravity sensory systems during periods of altered gravity dependent sensory input. Horn ER Adv Space Biol Med; 2003; 9():133-71. PubMed ID: 14631632 [TBL] [Abstract][Full Text] [Related]
4. Development of gravity-sensing organs in altered gravity conditions: opposite conclusions from an amphibian and a molluscan preparation. Wiederhold ML; Pedrozo HA; Harrison JL; Hejl R; Gao W J Gravit Physiol; 1997 Jul; 4(2):P51-4. PubMed ID: 11540698 [TBL] [Abstract][Full Text] [Related]
5. Features of vestibuloocular reflex modulations induced by altered gravitational forces in tadpoles (Xenopus laevis). Sebastian C; Horn E Adv Space Res; 2001; 28(4):579-88. PubMed ID: 11799991 [TBL] [Abstract][Full Text] [Related]
6. Development of gravity-sensing organs in altered gravity. Wiederhold ML; Gao WY; Harrison JL; Hejl R Gravit Space Biol Bull; 1997 Jun; 10(2):91-6. PubMed ID: 11540125 [TBL] [Abstract][Full Text] [Related]
7. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis). Böser S; Dournon C; Gualandris-Parisot L; Horn E Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444 [TBL] [Abstract][Full Text] [Related]
8. Readaptation of the vestibuloocular reflex to 1g-condition in immature lower vertebrates (Xenopus laevis) after micro- or hypergravity exposure. Sebastian C; Horn E; Esseling K; Neubert J Acta Astronaut; 1995; 36(8-12):487-503. PubMed ID: 11540981 [TBL] [Abstract][Full Text] [Related]
9. "Critical periods" in vestibular development or adaptation of gravity sensory systems to altered gravitational conditions? Horn ER Arch Ital Biol; 2004 May; 142(3):155-74. PubMed ID: 15260375 [TBL] [Abstract][Full Text] [Related]
10. The role of gravity in the phylogeny of structure and function in animal sensors of spatial orientation, and their predicted action in weightlessness. Vinnikov YA; Gazenko OG; Titova LK; Bronstein AA; Tsirulis TP; Pevzner RA; Govardovskii VI; Gribakin FG; Pal'mbakh LP; Aronova MZ; Mashinskii AL; Ivanov VP; Kharkeevich TA; Pyatkina GA Life Sci Space Res; 1974; 12():159-76. PubMed ID: 11911144 [TBL] [Abstract][Full Text] [Related]
11. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Clément G; Moore ST; Raphan T; Cohen B Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738 [TBL] [Abstract][Full Text] [Related]
12. Gravity related research with fishes--perspectives in regard to the upcoming International Space Station, ISS. Rahmann H; Anken RH Adv Space Res; 2002; 30(4):697-710. PubMed ID: 12528666 [TBL] [Abstract][Full Text] [Related]
13. Altered gravitational forces affect the development of the static vestibuloocular reflex in fish (Oreochromis mossambicus). Sebastian C; Esseling K; Horn E J Neurobiol; 2001 Jan; 46(1):59-72. PubMed ID: 11108616 [TBL] [Abstract][Full Text] [Related]
14. Influence of gravity on the circadian timing system. Fuller CA; Hoban-Higgins TM; Griffin DW; Murakami DM Adv Space Res; 1994; 14(8):399-408. PubMed ID: 11537948 [TBL] [Abstract][Full Text] [Related]
15. Spatial Updating Depends on Gravity. Stahn AC; Riemer M; Wolbers T; Werner A; Brauns K; Besnard S; Denise P; Kühn S; Gunga HC Front Neural Circuits; 2020; 14():20. PubMed ID: 32581724 [TBL] [Abstract][Full Text] [Related]
16. Study of mouse behavior in different gravity environments. Shimomura M; Yumoto A; Ota-Murakami N; Kudo T; Shirakawa M; Takahashi S; Morita H; Shiba D Sci Rep; 2021 Jan; 11(1):2665. PubMed ID: 33514775 [TBL] [Abstract][Full Text] [Related]
17. Effects of microgravity on vestibular development and function in rats: genetics and environment. Ronca AE; Fritzsch B; Alberts JR; Bruce LL Korean J Biol Sci; 2000 Sep; 4(3):215-21. PubMed ID: 12760372 [TBL] [Abstract][Full Text] [Related]
18. Influence of altered gravity on the cytochemical localization of cytochrome oxidase activity in central and peripheral gravisensory systems in developing cichlid fish. Paulus U; Nindl G; Körtje KH; Slenzka K; Neubert J; Rahmann H Adv Space Res; 1996; 17(6-7):285-8. PubMed ID: 11538631 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of the macular vestibuloocular reflex to altered gravitational conditions in a fish (Oreochromis mossambicus). Horn E; Sebastian C Adv Space Res; 2002; 30(4):711-20. PubMed ID: 12528668 [TBL] [Abstract][Full Text] [Related]
20. Effects of gravity on early development. Neubert J; Schatz A; Bromeis B; Linke-Hommes A Adv Space Res; 1998; 22(2):265-71. PubMed ID: 11541404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]