These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11669573)

  • 1. Position effect of the excision frequency of the Antirrhinum transposon Tam3: implications for the degree of position-dependent methylation in the ends of the element.
    Kitamura K; Hashida SN; Mikami T; Kishima Y
    Plant Mol Biol; 2001 Nov; 47(4):475-90. PubMed ID: 11669573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose.
    Kishima Y; Yamashita S; Martin C; Mikami T
    Plant Mol Biol; 1999 Jan; 39(2):299-308. PubMed ID: 10080696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus.
    Hashida SN; Kitamura K; Mikami T; Kishima Y
    Plant Physiol; 2003 Jul; 132(3):1207-16. PubMed ID: 12857803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA methylation is not necessary for the inactivation of the Tam3 transposon at non-permissive temperature in Antirrhinum.
    Hashida SN; Kishima Y; Mikami T
    J Plant Physiol; 2005 Nov; 162(11):1292-6. PubMed ID: 16323282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tam3 in Antirrhinum majus is exceptional transposon in resistant to alteration by abortive gap repair: identification of nested transposons.
    Yamashita S; Mikami T; Kishima Y
    Mol Gen Genet; 1998 Sep; 259(5):468-74. PubMed ID: 9790577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to gap repair of the transposon Tam3 in Antirrhinum majus: a role of the end regions.
    Yamashita S; Takano-Shimizu T; Kitamura K; Mikami T; Kishima Y
    Genetics; 1999 Dec; 153(4):1899-908. PubMed ID: 10581294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase.
    Hashida SN; Uchiyama T; Martin C; Kishima Y; Sano Y; Mikami T
    Plant Cell; 2006 Jan; 18(1):104-18. PubMed ID: 16326924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to establish a mutually beneficial relationship between a transposon and its host: lessons from Tam3 in Antirrhinum.
    Wang S; Koide Y; Kishima Y
    Genes Genet Syst; 2022 Dec; 97(4):177-184. PubMed ID: 36372414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tam3 produces a suppressible allele of the DAG locus of Antirrhinum majus similar to Mu-suppressible alleles of maize.
    Chatterjee M; Martin C
    Plant J; 1997 Apr; 11(4):759-71. PubMed ID: 9161034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of the transposon Tam3 in Antirrhinum and tobacco: possible role of DNA methylation.
    Martin C; Prescott A; Lister C; MacKay S
    EMBO J; 1989 Apr; 8(4):997-1004. PubMed ID: 2545443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin.
    Uchiyama T; Fujino K; Ogawa T; Wakatsuki A; Kishima Y; Mikami T; Sano Y
    Plant Physiol; 2009 Nov; 151(3):1557-69. PubMed ID: 19759347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus.
    Hudson AD; Carpenter R; Coen ES
    Plant Mol Biol; 1990 May; 14(5):835-44. PubMed ID: 1966387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus.
    Martin C; Lister C
    Dev Genet; 1989; 10(6):438-51. PubMed ID: 2557989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple regulatory mechanisms influence the activity of the transposon, Tam3, of Antirrhinum.
    Uchiyama T; Saito Y; Kuwabara H; Fujino K; Kishima Y; Martin C; Sano Y
    New Phytol; 2008 Jul; 179(2):343-355. PubMed ID: 19086175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants.
    Haring MA; Gao J; Volbeda T; Rommens CM; Nijkamp HJ; Hille J
    Plant Mol Biol; 1989 Aug; 13(2):189-201. PubMed ID: 2562396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative plant host defense against transposon activities occurs at the post-translational stage.
    Zhou H; Kishima Y
    Plant Signal Behav; 2017 May; 12(5):e1318238. PubMed ID: 28426280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trans-activation of an artificial dTam3 transposable element in transgenic tobacco plants.
    Haring MA; Teeuwen-de Vroomen MJ; Nijkamp HJ; Hille J
    Plant Mol Biol; 1991 Jan; 16(1):39-47. PubMed ID: 1653629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pair of transposons coordinately suppresses gene expression, independent of pathways mediated by siRNA in Antirrhinum.
    Uchiyama T; Hiura S; Ebinuma I; Senda M; Mikami T; Martin C; Kishima Y
    New Phytol; 2013 Jan; 197(2):431-440. PubMed ID: 23190182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus.
    Luo D; Coen ES; Doyle S; Carpenter R
    Plant J; 1991 Jul; 1(1):59-69. PubMed ID: 1668965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidearadialis.
    Lister C; Jackson D; Martin C
    Plant Cell; 1993 Nov; 5(11):1541-53. PubMed ID: 8312739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.