BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11669618)

  • 61. Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition.
    Adak S; Crooks C; Wang Q; Crane BR; Tainer JA; Getzoff ED; Stuehr DJ
    J Biol Chem; 1999 Sep; 274(38):26907-11. PubMed ID: 10480900
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D; Frapart Y; Desbois A; Zimmermann JL; Boucher JL; Gorren AC; Mayer B; Stuehr DJ; Mansuy D
    Biochemistry; 2003 Apr; 42(13):3858-67. PubMed ID: 12667076
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nitric oxide synthase stabilizes the tetrahydrobiopterin cofactor radical by controlling its protonation state.
    Stoll S; NejatyJahromy Y; Woodward JJ; Ozarowski A; Marletta MA; Britt RD
    J Am Chem Soc; 2010 Aug; 132(33):11812-23. PubMed ID: 20669954
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reconstitution of pterin-free inducible nitric-oxide synthase.
    Rusche KM; Marletta MA
    J Biol Chem; 2001 Jan; 276(1):421-7. PubMed ID: 11022039
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Essential thiol requirement to restore pterin- or substrate-binding capability and to regenerate native enzyme-type high-spin heme spectra in the Escherichia coli-expressed tetrahydrobiopterin-free oxygenase domain of neuronal nitric oxide synthase.
    Sono M; Ledbetter AP; McMillan K; Roman LJ; Shea TM; Masters BS; Dawson JH
    Biochemistry; 1999 Nov; 38(48):15853-62. PubMed ID: 10625450
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase.
    Presta A; Siddhanta U; Wu C; Sennequier N; Huang L; Abu-Soud HM; Erzurum S; Stuehr DJ
    Biochemistry; 1998 Jan; 37(1):298-310. PubMed ID: 9425051
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Binding of L-arginine and imidazole suggests heterogeneity of rat brain neuronal nitric oxide synthase.
    Gorren AC; Schmidt K; Mayer B
    Biochemistry; 2002 Jun; 41(24):7819-29. PubMed ID: 12056914
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Revisiting the Val/Ile Mutation in Mammalian and Bacterial Nitric Oxide Synthases: A Spectroscopic and Kinetic Study.
    Weisslocker-Schaetzel M; Lembrouk M; Santolini J; Dorlet P
    Biochemistry; 2017 Feb; 56(5):748-756. PubMed ID: 28074650
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Roles of the heme proximal side residues tryptophan409 and tryptophan421 of neuronal nitric oxide synthase in the electron transfer reaction.
    Yumoto T; Sagami I; Daff S; Shimizu T
    J Inorg Biochem; 2000 Nov; 82(1-4):163-70. PubMed ID: 11132623
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Geminate recombination of nitric oxide to endothelial nitric-oxide synthase and mechanistic implications.
    Négrerie M; Berka V; Vos MH; Liebl U; Lambry JC; Tsai AL; Martin JL
    J Biol Chem; 1999 Aug; 274(35):24694-702. PubMed ID: 10455137
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dissecting structural and electronic effects in inducible nitric oxide synthase.
    Hannibal L; Page RC; Haque MM; Bolisetty K; Yu Z; Misra S; Stuehr DJ
    Biochem J; 2015 Apr; 467(1):153-65. PubMed ID: 25608846
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cysteine-200 of human inducible nitric oxide synthase is essential for dimerization of haem domains and for binding of haem, nitroarginine and tetrahydrobiopterin.
    Cubberley RR; Alderton WK; Boyhan A; Charles IG; Lowe PN; Old RW
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):141-6. PubMed ID: 9173873
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electron paramagnetic resonance characterization of tetrahydrobiopterin radical formation in bacterial nitric oxide synthase compared to mammalian nitric oxide synthase.
    Brunel A; Santolini J; Dorlet P
    Biophys J; 2012 Jul; 103(1):109-17. PubMed ID: 22828337
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment.
    Sengupta R; Sahoo R; Ray SS; Dutta T; Dasgupta A; Ghosh S
    Mol Cell Biochem; 2006 Mar; 284(1-2):117-26. PubMed ID: 16411020
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intramolecular electron transfer from biopterin to Fe
    Kobayashi K; Ito YT; Kasu Y; Horitani M; Kozawa T
    J Inorg Biochem; 2023 Jan; 238():112035. PubMed ID: 36327499
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay.
    Alderton WK; Boyhan A; Lowe PN
    Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):195-201. PubMed ID: 9576868
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction.
    Ghosh DK; Crane BR; Ghosh S; Wolan D; Gachhui R; Crooks C; Presta A; Tainer JA; Getzoff ED; Stuehr DJ
    EMBO J; 1999 Nov; 18(22):6260-70. PubMed ID: 10562538
    [TBL] [Abstract][Full Text] [Related]  

  • 78. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Sudhamsu J; Lees NS; Crane BR; Hoffman BM
    J Am Chem Soc; 2009 Oct; 131(40):14493-507. PubMed ID: 19754116
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization of the inducible nitric oxide synthase oxygenase domain identifies a 49 amino acid segment required for subunit dimerization and tetrahydrobiopterin interaction.
    Ghosh DK; Wu C; Pitters E; Moloney M; Werner ER; Mayer B; Stuehr DJ
    Biochemistry; 1997 Sep; 36(35):10609-19. PubMed ID: 9271491
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism.
    Adak S; Wang Q; Stuehr DJ
    J Biol Chem; 2000 Oct; 275(43):33554-61. PubMed ID: 10945985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.