These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 11669641)
1. Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Wang TY; Leventis R; Silvius JR Biochemistry; 2001 Oct; 40(43):13031-40. PubMed ID: 11669641 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: a model for molecular partitioning into "lipid rafts". Wang TY; Leventis R; Silvius JR Biophys J; 2000 Aug; 79(2):919-33. PubMed ID: 10920023 [TBL] [Abstract][Full Text] [Related]
3. Visualizing association of lipidated signaling proteins in heterogeneous membranes--partitioning into subdomains, lipid sorting, interfacial adsorption, and protein association. Weise K; Triola G; Janosch S; Waldmann H; Winter R Biochim Biophys Acta; 2010 Jul; 1798(7):1409-17. PubMed ID: 20025847 [TBL] [Abstract][Full Text] [Related]
4. Partitioning of dual-lipidated peptides into membrane microdomains: lipid sorting vs peptide aggregation. Janosch S; Nicolini C; Ludolph B; Peters C; Völkert M; Hazlet TL; Gratton E; Waldmann H; Winter R J Am Chem Soc; 2004 Jun; 126(24):7496-503. PubMed ID: 15198596 [TBL] [Abstract][Full Text] [Related]
5. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Crane JM; Tamm LK Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412 [TBL] [Abstract][Full Text] [Related]
6. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Gandhavadi M; Allende D; Vidal A; Simon SA; McIntosh TJ Biophys J; 2002 Mar; 82(3):1469-82. PubMed ID: 11867462 [TBL] [Abstract][Full Text] [Related]
7. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Bakht O; Pathak P; London E Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350 [TBL] [Abstract][Full Text] [Related]
8. Lipid rafts reconstituted in model membranes. Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302 [TBL] [Abstract][Full Text] [Related]
9. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Pokorny A; Almeida PF Biochemistry; 2005 Jul; 44(27):9538-44. PubMed ID: 15996108 [TBL] [Abstract][Full Text] [Related]
10. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Juhasz J; Davis JH; Sharom FJ Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452 [TBL] [Abstract][Full Text] [Related]
11. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. McIntosh TJ; Vidal A; Simon SA Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280 [TBL] [Abstract][Full Text] [Related]
12. Influence of the lipidation motif on the partitioning and association of N-Ras in model membrane subdomains. Weise K; Triola G; Brunsveld L; Waldmann H; Winter R J Am Chem Soc; 2009 Feb; 131(4):1557-64. PubMed ID: 19133719 [TBL] [Abstract][Full Text] [Related]
13. Calculating partition coefficients of chain anchors in liquid-ordered and liquid-disordered phases. Uline MJ; Longo GS; Schick M; Szleifer I Biophys J; 2010 May; 98(9):1883-92. PubMed ID: 20441752 [TBL] [Abstract][Full Text] [Related]
14. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Kiessling V; Crane JM; Tamm LK Biophys J; 2006 Nov; 91(9):3313-26. PubMed ID: 16905614 [TBL] [Abstract][Full Text] [Related]
15. Transmembrane helices can induce domain formation in crowded model membranes. Domański J; Marrink SJ; Schäfer LV Biochim Biophys Acta; 2012 Apr; 1818(4):984-94. PubMed ID: 21884678 [TBL] [Abstract][Full Text] [Related]
16. Partitioning of amphiphiles between coexisting ordered and disordered phases in two-phase lipid bilayer membranes. Mesquita RM; Melo E; Thompson TE; Vaz WL Biophys J; 2000 Jun; 78(6):3019-25. PubMed ID: 10827980 [TBL] [Abstract][Full Text] [Related]
17. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Wang TY; Silvius JR Biophys J; 2003 Jan; 84(1):367-78. PubMed ID: 12524290 [TBL] [Abstract][Full Text] [Related]
18. Sorting of lipidated peptides in fluid bilayers: a molecular-level investigation. Daly TA; Almeida PF; Regen SL J Am Chem Soc; 2012 Oct; 134(41):17245-52. PubMed ID: 22998217 [TBL] [Abstract][Full Text] [Related]
19. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
20. The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes. Garvik O; Benediktson P; Simonsen AC; Ipsen JH; Wüstner D Chem Phys Lipids; 2009 Jun; 159(2):114-8. PubMed ID: 19477318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]