BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 11669642)

  • 21. Deletion analysis of MotA and MotB, components of the force-generating unit in the flagellar motor of Salmonella.
    Muramoto K; Macnab RM
    Mol Microbiol; 1998 Sep; 29(5):1191-202. PubMed ID: 9767587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor.
    Nakamura S; Minamino T; Kami-Ike N; Kudo S; Namba K
    Biophysics (Nagoya-shi); 2014; 10():35-41. PubMed ID: 27493496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of the ion flux pathway in stator units of proton- and sodium-driven flagellar motors.
    Sudo Y; Terashima H; Abe-Yoshizumi R; Kojima S; Homma M
    Biophysics (Nagoya-shi); 2009; 5():45-52. PubMed ID: 27857578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB.
    Togashi F; Yamaguchi S; Kihara M; Aizawa SI; Macnab RM
    J Bacteriol; 1997 May; 179(9):2994-3003. PubMed ID: 9139919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor.
    Che YS; Nakamura S; Morimoto YV; Kami-Ike N; Namba K; Minamino T
    Mol Microbiol; 2014 Jan; 91(1):175-84. PubMed ID: 24255940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.
    Lloyd SA; Whitby FG; Blair DF; Hill CP
    Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor.
    Pourjaberi SNS; Terahara N; Namba K; Minamino T
    Mol Microbiol; 2017 Nov; 106(4):646-658. PubMed ID: 28925530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli.
    Sharp LL; Zhou J; Blair DF
    Biochemistry; 1995 Jul; 34(28):9166-71. PubMed ID: 7619816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppressor mutants from MotB-D24E and MotS-D30E in the flagellar stator complex of Bacillus subtilis.
    Takahashi Y; Koyama K; Ito M
    J Gen Appl Microbiol; 2014; 60(4):131-9. PubMed ID: 25273986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor.
    Kojima S; Furukawa Y; Matsunami H; Minamino T; Namba K
    J Bacteriol; 2008 May; 190(9):3314-22. PubMed ID: 18310339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation.
    Che YS; Nakamura S; Kojima S; Kami-ike N; Namba K; Minamino T
    J Bacteriol; 2008 Oct; 190(20):6660-7. PubMed ID: 18723617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning, purification and crystallization of MotB, a stator component of the proton-driven bacterial flagellar motor.
    O'Neill J; Roujeinikova A
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Jun; 64(Pt 6):561-3. PubMed ID: 18540076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Putative Spanner Function of the
    Homma M; Terashima H; Koiwa H; Kojima S
    J Bacteriol; 2021 Jul; 203(16):e0015921. PubMed ID: 34096782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the MotB linker in the assembly and activation of the bacterial flagellar motor.
    O'Neill J; Xie M; Hijnen M; Roujeinikova A
    Acta Crystallogr D Biol Crystallogr; 2011 Dec; 67(Pt 12):1009-16. PubMed ID: 22120737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic interactions between rotor and stator in the bacterial flagellar motor.
    Zhou J; Lloyd SA; Blair DF
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6436-41. PubMed ID: 9600984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor.
    Garza AG; Biran R; Wohlschlegel JA; Manson MD
    J Mol Biol; 1996 May; 258(2):270-85. PubMed ID: 8627625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extragenic suppression of motA missense mutations of Escherichia coli.
    Garza AG; Bronstein PA; Valdez PA; Harris-Haller LW; Manson MD
    J Bacteriol; 1996 Nov; 178(21):6116-22. PubMed ID: 8892808
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Zhu S; Nishikino T; Takekawa N; Terashima H; Kojima S; Imada K; Homma M; Liu J
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane.
    Stader J; Matsumura P; Vacante D; Dean GE; Macnab RM
    J Bacteriol; 1986 Apr; 166(1):244-52. PubMed ID: 3007435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ancestral reconstruction of the MotA stator subunit reveals that conserved residues far from the pore are required to drive flagellar motility.
    Islam MI; Ridone P; Lin A; Michie KA; Matzke NJ; Hochberg G; Baker MAB
    Microlife; 2023; 4():uqad011. PubMed ID: 37223728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.