BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11669649)

  • 1. Thermodynamic basis for the increased thermostability of CheY from the hyperthermophile Thermotoga maritima.
    Deutschman WA; Dahlquist FW
    Biochemistry; 2001 Oct; 40(43):13107-13. PubMed ID: 11669649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit exchange by CheA histidine kinases from the mesophile Escherichia coli and the thermophile Thermotoga maritima.
    Park SY; Quezada CM; Bilwes AM; Crane BR
    Biochemistry; 2004 Mar; 43(8):2228-40. PubMed ID: 14979719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability.
    Usher KC; de la Cruz AF; Dahlquist FW; Swanson RV; Simon MI; Remington SJ
    Protein Sci; 1998 Feb; 7(2):403-12. PubMed ID: 9521117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR.
    Schuler B; Kremer W; Kalbitzer HR; Jaenicke R
    Biochemistry; 2002 Oct; 41(39):11670-80. PubMed ID: 12269809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis.
    Motono C; Gromiha MM; Kumar S
    Proteins; 2008 May; 71(2):655-69. PubMed ID: 17975840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis of the unfolding and stability of the dimeric DNA-binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and its E34D mutant.
    Ruiz-Sanz J; Filimonov VV; Christodoulou E; Vorgias CE; Mateo PL
    Eur J Biochem; 2004 Apr; 271(8):1497-507. PubMed ID: 15066175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold denaturation of CheY.
    DeKoster GT; Robertson AD
    J Mol Biol; 1995 Jun; 249(3):529-34. PubMed ID: 7783208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight into the low affinity between Thermotoga maritima CheA and CheB compared to their Escherichia coli/Salmonella typhimurium counterparts.
    Park S; Crane BR
    Int J Biol Macromol; 2011 Nov; 49(4):794-800. PubMed ID: 21816169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production, characterization, and assessment of a stable analog of the response regulator CheY-phosphate from Thermotoga maritima.
    Beyersdorf MS; Sircar R; Lookadoo DB; Bottone CJ; Lynch MJ; Crane BR; Halkides CJ
    Protein Sci; 2017 Aug; 26(8):1547-1554. PubMed ID: 28440031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic analysis of the chemotactic protein from Escherichia coli, CheY.
    Filimonov VV; Prieto J; Martinez JC; Bruix M; Mateo PL; Serrano L
    Biochemistry; 1993 Nov; 32(47):12906-21. PubMed ID: 8251514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conserved π-helix plays a key role in thermoadaptation of catalysis in the glycoside hydrolase family 4.
    Mohapatra SB; Manoj N
    Biochim Biophys Acta Proteins Proteom; 2021 Jan; 1869(1):140523. PubMed ID: 32853774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of an activated Thermotoga maritima CheY with N-terminal region of FliM.
    Ahn DR; Song H; Kim J; Lee S; Park S
    Int J Biol Macromol; 2013 Mar; 54():76-83. PubMed ID: 23237794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein "CheY".
    Paul M; Hazra M; Barman A; Hazra S
    J Biomol Struct Dyn; 2014; 32(6):928-49. PubMed ID: 23796004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride.
    Agashe VR; Udgaonkar JB
    Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In different organisms, the mode of interaction between two signaling proteins is not necessarily conserved.
    Park SY; Beel BD; Simon MI; Bilwes AM; Crane BR
    Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11646-51. PubMed ID: 15289606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal unfolding and conformational stability of the recombinant domain II of glutamate dehydrogenase from the hyperthermophile Thermotoga maritima.
    Consalvi V; Chiaraluce R; Giangiacomo L; Scandurra R; Christova P; Karshikoff A; Knapp S; Ladenstein R
    Protein Eng; 2000 Jul; 13(7):501-7. PubMed ID: 10906345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The entropic nature of protein thermal stabilization.
    Khechinashvili NN; Capital Ka Cyrillicabanov AV; Kondratyev MS; Polozov RV
    J Biomol Struct Dyn; 2014; 32(9):1396-405. PubMed ID: 23879480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima.
    Swanson RV; Sanna MG; Simon MI
    J Bacteriol; 1996 Jan; 178(2):484-9. PubMed ID: 8550470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.