BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11669649)

  • 21. Structural genomics of thermotoga maritima proteins shows that contact order is a major determinant of protein thermostability.
    Robinson-Rechavi M; Godzik A
    Structure; 2005 Jun; 13(6):857-60. PubMed ID: 15939017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of a Stable Analog of the Phosphorylated Form of CheY: Phosphono-CheY.
    Lookadoo DB; Beyersdorf MS; Halkides CJ
    Methods Mol Biol; 2018; 1729():337-343. PubMed ID: 29429102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The solution structure and interactions of CheW from Thermotoga maritima.
    Griswold IJ; Zhou H; Matison M; Swanson RV; McIntosh LP; Simon MI; Dahlquist FW
    Nat Struct Biol; 2002 Feb; 9(2):121-5. PubMed ID: 11799399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model.
    Su JG; Han XM; Zhao SX; Hou YX; Li XY; Qi LS; Wang JH
    J Mol Model; 2016 Apr; 22(4):91. PubMed ID: 27021210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. Kinetic analysis of the inverse hydrophobic effect.
    Muñoz V; Lopez EM; Jager M; Serrano L
    Biochemistry; 1994 May; 33(19):5858-66. PubMed ID: 8180214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein.
    Esser D; Rudolph R; Jaenicke R; Böhm G
    J Mol Biol; 1999 Sep; 291(5):1135-46. PubMed ID: 10518949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Favourable native-like helical local interactions can accelerate protein folding.
    Viguera AR; Villegas V; Avilés FX; Serrano L
    Fold Des; 1997; 2(1):23-33. PubMed ID: 9080196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The thermostability of DNA-binding protein HU from mesophilic, thermophilic, and extreme thermophilic bacteria.
    Christodoulou E; Vorgias CE
    Extremophiles; 2002 Feb; 6(1):21-31. PubMed ID: 11878558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics simulation of thermal unfolding of Thermatoga maritima DHFR.
    Pang J; Allemann RK
    Phys Chem Chem Phys; 2007 Feb; 9(6):711-8. PubMed ID: 17268682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR structure determination of the conserved hypothetical protein TM1816 from Thermotoga maritima.
    Columbus L; Peti W; Etezady-Esfarjani T; Herrmann T; Wüthrich K
    Proteins; 2005 Aug; 60(3):552-7. PubMed ID: 15937903
    [No Abstract]   [Full Text] [Related]  

  • 32. Temperature dependence of switching of the bacterial flagellar motor by the protein CheY(13DK106YW).
    Turner L; Samuel AD; Stern AS; Berg HC
    Biophys J; 1999 Jul; 77(1):597-603. PubMed ID: 10388784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maltose-binding protein from the hyperthermophilic bacterium Thermotoga maritima: stability and binding properties.
    Wassenberg D; Liebl W; Jaenicke R
    J Mol Biol; 2000 Jan; 295(2):279-88. PubMed ID: 10623526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An NMR view of the folding process of a CheY mutant at the residue level.
    Garcia P; Serrano L; Rico M; Bruix M
    Structure; 2002 Sep; 10(9):1173-1185. PubMed ID: 12220489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CheY's acetylation sites responsible for generating clockwise flagellar rotation in Escherichia coli.
    Fraiberg M; Afanzar O; Cassidy CK; Gabashvili A; Schulten K; Levin Y; Eisenbach M
    Mol Microbiol; 2015 Jan; 95(2):231-44. PubMed ID: 25388160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetics of protein stability at extreme environmental temperatures in bacterial trigger factors.
    Struvay C; Negro S; Matagne A; Feller G
    Biochemistry; 2013 Apr; 52(17):2982-90. PubMed ID: 23547956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide-dependent methyltransferase CheR:MCP tethering.
    Perez E; Stock AM
    Mol Microbiol; 2007 Jan; 63(2):363-78. PubMed ID: 17163981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of Bacillus subtilis CheY.
    Bischoff DS; Bourret RB; Kirsch ML; Ordal GW
    Biochemistry; 1993 Sep; 32(35):9256-61. PubMed ID: 8369293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural conservation in the CheY superfamily.
    Volz K
    Biochemistry; 1993 Nov; 32(44):11741-53. PubMed ID: 8218244
    [No Abstract]   [Full Text] [Related]  

  • 40. A thermodynamic study of mesophilic, thermophilic, and hyperthermophilic L-arabinose isomerases: the effects of divalent metal ions on protein stability at elevated temperatures.
    Lee DW; Hong YH; Choe EA; Lee SJ; Kim SB; Lee HS; Oh JW; Shin HH; Pyun YR
    FEBS Lett; 2005 Feb; 579(5):1261-6. PubMed ID: 15710423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.