These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 1166966)

  • 1. The incremental evolution, collection and determination of mercury in soils at the p.p.b. level as a function of temperature.
    Carel AB
    Anal Chim Acta; 1975 Sep; 78(2):479-82. PubMed ID: 1166966
    [No Abstract]   [Full Text] [Related]  

  • 2. Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils.
    Bahlmann E; Ebinghaus R; Ruck W
    J Environ Manage; 2006 Oct; 81(2):114-25. PubMed ID: 16831509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaseous mercury emissions from unsterilized and sterilized soils: the effect of temperature and UV radiation.
    Choi HD; Holsen TM
    Environ Pollut; 2009 May; 157(5):1673-8. PubMed ID: 19155110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The determination of total mercury at the part per billion level in soils, ores, and organic materials.
    Wimberley JW
    Anal Chim Acta; 1975 Jun; 76(2):337-43. PubMed ID: 1147278
    [No Abstract]   [Full Text] [Related]  

  • 5. Determination and assessment of mercury content in calcareous soils.
    Gil C; Ramos-Miras J; Roca-Pérez L; Boluda R
    Chemosphere; 2010 Jan; 78(4):409-15. PubMed ID: 20004461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Extraction-photometric determination of mercury in soils and waters].
    Kish PP; Vitenko GM; Sabov VA; Buletsa VI
    Gig Sanit; 1975 Nov; (11):74-6. PubMed ID: 1205160
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of mercury level in waters, bottom sediments and soils in selected rural areas.
    Umińska R
    J Hyg Epidemiol Microbiol Immunol; 1987; 31(1):9-22. PubMed ID: 3571971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil.
    Almeida MD; Lacerda LD; Bastos WR; Herrmann JC
    Environ Pollut; 2005 Sep; 137(2):179-86. PubMed ID: 15885862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury and 2,4-D levels in wheat and soils from sixteen states, 1969.
    Gowen JA; Wiersma GB; Tai H
    Pestic Monit J; 1976 Dec; 10(3):111-3. PubMed ID: 1005063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties.
    Welfringer B; Zagury GJ
    J Environ Qual; 2009; 38(6):2237-44. PubMed ID: 19875779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary study of mercury residues in soils where mercury seed treatments have been used.
    Sand PF; Wiersma GB; Tai H; Stevens LJ
    Pestic Monit J; 1971 Jun; 5(1):32-3. PubMed ID: 5164310
    [No Abstract]   [Full Text] [Related]  

  • 12. Potential application of a semi-quantitative method for mercury determination in soils, sediments and gold mining residues.
    Yallouz AV; Cesar RG; Egler SG
    Environ Pollut; 2008 Feb; 151(3):429-33. PubMed ID: 17614168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid, sensitive method for determination of mercury in a variety of biological samples.
    Deitz FD; Sell JL; Bristol D
    J Assoc Off Anal Chem; 1973 Mar; 56(2):378-82. PubMed ID: 4775513
    [No Abstract]   [Full Text] [Related]  

  • 14. Modelling of mercury emissions from background soils.
    Scholtz MT; Van Heyst BJ; Schroeder WH
    Sci Total Environ; 2003 Mar; 304(1-3):185-207. PubMed ID: 12663183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D; Horvat M; Kotnik J
    J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Limits for Hg(II) in soils, derived from chronic toxicity data.
    Tipping E; Lofts S; Hooper H; Frey B; Spurgeon D; Svendsen C
    Environ Pollut; 2010 Jul; 158(7):2465-71. PubMed ID: 20434245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas.
    Rinklebe J; During A; Overesch M; Du Laing G; Wennrich R; Stärk HJ; Mothes S
    Environ Pollut; 2010 Jan; 158(1):308-18. PubMed ID: 19646800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaseous elemental mercury emissions and CO(2) respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions.
    Obrist D; Faïn X; Berger C
    Sci Total Environ; 2010 Mar; 408(7):1691-700. PubMed ID: 20071007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation of subsurface microbial communities to mercury.
    de Lipthay JR; Rasmussen LD; Oregaard G; Simonsen K; Bahl MI; Kroer N; Sørensen SJ
    FEMS Microbiol Ecol; 2008 Jul; 65(1):145-55. PubMed ID: 18522646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air-soil exchange of mercury from background soils in the United States.
    Ericksen JA; Gustin MS; Xin M; Weisberg PJ; Fernandez GC
    Sci Total Environ; 2006 Aug; 366(2-3):851-63. PubMed ID: 16181661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.