These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11669822)

  • 1. Cyclic Aminophosphites and -phosphoranes Possessing Six- and Higher-Membered Rings: A Comparative Study of Structure and Reactivity.
    Said MA; Pülm M; Herbst-Irmer R; Kumara Swamy KC
    Inorg Chem; 1997 May; 36(10):2044-2051. PubMed ID: 11669822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apical versus equatorial disposition of substituents in tetraoxyphosphoranes bearing a 1,3,2-dioxaphosphocin ring: implications on apicophilicity in trigonal bipyramidal phosphorus.
    Kommana P; Kumaraswamy S; Vittal JJ; Kumara Swamy KC
    Inorg Chem; 2002 May; 41(9):2356-63. PubMed ID: 11978098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axial Site Occupancy by the Least Electronegative Ligands in Trigonal Bipyramidal Tetraoxyphosphoranes(1).
    Timosheva NV; Chandrasekaran A; Prakasha TK; Day RO; Holmes RR
    Inorg Chem; 1996 Oct; 35(22):6552-6560. PubMed ID: 11666804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first structural study on a cyclic tricoordinate phosphorochloridite and a pentacoordinate phosphorane based on 1,2,3,5-protected myo-inositol--a new conformation of 1,3,2-dioxaphosphorinane ring.
    Pavan Kumar KV; Kumara Swamy KC
    Carbohydr Res; 2007 Jul; 342(9):1182-8. PubMed ID: 17379195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse modes of reactivity of dialkyl azodicarboxylates with P(III) compounds: synthesis, structure, and reactivity of products other than the Morrison-Brunn-Huisgen intermediate in a Mitsunobu-type reaction.
    Satish Kumar N; Praveen Kumar K; Pavan Kumar KV; Kommana P; Vittal JJ; Kumara Swamy KC
    J Org Chem; 2004 Mar; 69(6):1880-9. PubMed ID: 15058933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational Preference and Donor Atom Interaction Leading to Hexacoordination vs Pentacoordination in Bicyclic Tetraoxyphosphoranes(1).
    Sherlock DJ; Chandrasekaran A; Prakasha TK; Day RO; Holmes RR
    Inorg Chem; 1998 Jan; 37(1):93-101. PubMed ID: 11670266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pentacoordinate phosphoranes with reversed apicophilicity as stable intermediates in a mitsunobu-type reaction.
    Satish Kumar N; Kommana P; Vittal JJ; Kumara Swamy KC
    J Org Chem; 2002 Sep; 67(19):6653-8. PubMed ID: 12227794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristic reactions and properties of C-apical O-equatorial (O-cis) spirophosphoranes: effect of the sigma(P)(-)(O) orbital in the equatorial plane and isolation of a hexacoordinate oxaphosphetane as an intermediate of the Wittig type reaction of 10-P-5 phosphoranes.
    Matsukawa S; Kojima S; Kajiyama K; Yamamoto Y; Akiba KY; Re S; Nagase S
    J Am Chem Soc; 2002 Nov; 124(44):13154-70. PubMed ID: 12405844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Reactivity of the Phosphorus-Chlorine and Carbon-Chlorine Bonds in Cyclic Chlorocarbaphosphazenes: An Unusual Activation of a Carbon-Nitrogen Bond in Trialkylamines.
    Vij A; Elias AJ; Kirchmeier RL; Shreeve JM
    Inorg Chem; 1997 Jun; 36(13):2730-2745. PubMed ID: 11669905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexacoordinate Phosphorus. 7. Synthesis and Characterization of Neutral Phosphorus(V) Compounds Containing Divalent Tridentate Diphenol Imine, Azo, and Thio Ligands.
    Wong CY; McDonald R; Cavell RG
    Inorg Chem; 1996 Jan; 35(2):325-334. PubMed ID: 11666212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanatranes derailed: static and dynamic triethanolamine slippage induced by polyphenoxide chelation.
    Maestri AG; Brown SN
    Inorg Chem; 2004 Nov; 43(22):6995-7004. PubMed ID: 15500337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional single amino acid chelates for labeling of biomolecules with the [Tc(CO)(3)](+) and [Re(CO)(3)](+) cores. Crystal and molecular structures of [ReBr(CO)(3)(H(2)NCH(2)C(5)H(4)N)], [Re(CO)(3)[(C(5)H(4)NCH(2))(2)NH]]Br, [Re(CO)(3)[(C(5)H(4)NCH(2))(2)NCH(2)CO(2)H]]Br, [Re(CO)(3)[X(Y)NCH(2)CO(2)CH(2)CH(3)]]Br (X = Y = 2-pyridylmethyl; X = 2-pyridylmethyl, Y = 2-(1-methylimidazolyl)methyl; X = Y = 2-(1-methylimidazolyl)methyl), [ReBr(CO)(3)[(C(5)H(4)NCH(2))NH(CH(2)C(4)H(3)S)]], and [Re(CO)(3)[(C(5)H(4)NCH(2))N(CH(2)C(4)H(3)S)(CH(2)CO(2))]].
    Banerjee SR; Levadala MK; Lazarova N; Wei L; Valliant JF; Stephenson KA; Babich JW; Maresca KP; Zubieta J
    Inorg Chem; 2002 Dec; 41(24):6417-25. PubMed ID: 12444786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further characterization of Mitsunobu-type intermediates in the reaction of dialkyl azodicarboxylates with P(III) compounds.
    Swamy KC; Kumar KP; Kumar NN
    J Org Chem; 2006 Feb; 71(3):1002-8. PubMed ID: 16438512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloro- and Fluoro-Substituted Phosphites, Phosphates, and Phosphoranes Exhibiting Sulfur and Oxygen Coordination(1).
    Chandrasekaran A; Sood P; Day RO; Holmes RR
    Inorg Chem; 1999 Jul; 38(14):3369-3376. PubMed ID: 11671073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Organyl-5-phosphaspiro[4.4]nonanes: a contribution to the structural chemistry of spirocyclic tetraalkylphosphonium salts and pentaalkylphosphoranes.
    Monkowius U; Mitzel NW; Schier A; Schmidbaur H
    J Am Chem Soc; 2002 May; 124(21):6126-32. PubMed ID: 12022847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal chemistry of cyclodiphosphanes containing phosphine and amide-phosphine functionalities: formation of a stable dipalladium(II) complex containing a Pd-P σ-bond.
    Balakrishna MS; Venkateswaran R; Mague JT
    Dalton Trans; 2010 Dec; 39(46):11149-62. PubMed ID: 20936211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental determination of the nN --> sigma*P-O interaction energy of O-equatorial C-apical phosphoranes bearing a primary amino group.
    Adachi T; Matsukawa S; Nakamoto M; Kajiyama K; Kojima S; Yamamoto Y; Akiba KY; Re S; Nagase S
    Inorg Chem; 2006 Sep; 45(18):7269-77. PubMed ID: 16933928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Coordination via Sulfur Donor Action in Cyclic Pentaoxyphosphoranes and the Parent Cyclic Phosphite. Influence of Pentafluorophenoxy Ligands(1).
    Sood P; Chandrasekaran A; Day RO; Holmes RR
    Inorg Chem; 1998 Jul; 37(15):3747-3752. PubMed ID: 11670474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Reactivity Relationships for Associative Displacement Reactions of Penta- and Hexacoordinate Cyclic Oxyphosphoranes with Catechols(1)(,)(2).
    Chandrasekaran A; Sood P; Holmes RR
    Inorg Chem; 1998 Feb; 37(3):459-466. PubMed ID: 11670295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium II complexes.
    Abdur-Rashid K; Clapham SE; Hadzovic A; Harvey JN; Lough AJ; Morris RH
    J Am Chem Soc; 2002 Dec; 124(50):15104-18. PubMed ID: 12475357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.