These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11669915)

  • 1. Ligand Dehydrogenation in Ruthenium-Amine Complexes: Reactivity of 1,2-Ethanediamine and 1,1,1-Tris(aminomethyl)ethane.
    Bernhard P; Bull DJ; Bürgi HB; Osvath P; Raselli A; Sargeson AM
    Inorg Chem; 1997 Jun; 36(13):2804-2815. PubMed ID: 11669915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disproportionation of pentaammineruthenium(III)-nucleoside complexes leads to two-electron oxidation of nucleosides without involving oxygen molecules.
    Wolf MW; Choi S
    J Biol Inorg Chem; 2012 Dec; 17(8):1283-91. PubMed ID: 23053532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetranuclear polybipyridyl complexes of Ru(II) and Mn(II), their electro- and photo-induced transformation into di-mu-oxo Mn(III)Mn(IV) hexanuclear complexes.
    Romain S; Baffert C; Dumas S; Chauvin J; Leprêtre JC; Daveloose D; Deronzier A; Collomb MN
    Dalton Trans; 2006 Dec; (48):5691-702. PubMed ID: 17146534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syntheses and Crystal Structures of Ruthenium Complexes of 1,4,8,11-Tetraazacyclotetradecane, Tris(2-aminoethyl)amine (tren), and Bis(2-aminoethyl)(iminomethyl)amine. A Microporous Layered Structure Consisting of {[K(tren)](2)[RuCl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[RuCl(6)]}(n)()(n)()(+).
    Sakai K; Yamada Y; Tsubomura T
    Inorg Chem; 1996 May; 35(11):3163-3172. PubMed ID: 11666513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bis(amido)ruthenium(IV) Complexes with 2,3-Diamino-2,3-dimethylbutane. Crystal Structure and Reversible Ru(IV)-Amide/Ru(III)-Amine and Ru(IV)-Amide/Ru(II)- Amine Redox Couples in Aqueous Solution.
    Chiu WH; Peng SM; Che CM
    Inorg Chem; 1996 May; 35(11):3369-3374. PubMed ID: 11666540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium coordination preferences in imidazole-containing systems revealed by electrospray ionization mass spectrometry and molecular modeling: Possible cues for the surprising stability of the Ru (III)/tris (hydroxymethyl)-aminomethane/imidazole complexes.
    Kaltashov IA; El Khoury A; Ren C; Savinov SN
    J Mass Spectrom; 2020 Feb; 55(2):e4435. PubMed ID: 31508870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First example of mu(3)-sulfido bridged mixed-valent triruthenium complex triangle Ru(III)(2)Ru(II)(O,O-acetylacetonate)(3)(mu-O,O,gamma-C-acetylacetonate)(3)(mu(3)-S) (1) incorporating simultaneous O,O- and gamma-C-bonded bridging acetylacetonate units. Synthesis, crystal structure, and spectral and redox properties.
    Patra S; Mondal B; Sarkar B; Niemeyer M; Lahiri GK
    Inorg Chem; 2003 Feb; 42(4):1322-7. PubMed ID: 12588171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination and Redox Chemistry of Substituted-Polypyridyl Complexes of Ruthenium.
    Dovletoglou A; Adeyemi SA; Meyer TJ
    Inorg Chem; 1996 Jul; 35(14):4120-4127. PubMed ID: 11666620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paramagnetic ruthenium-biimidazole derivatives [(acac)2Ru(III)(LHn)]m, n/m = 2/+, 1/0, 0/-. Synthesis, structures, solution properties and anion receptor features in solution state.
    Kundu T; Mobin SM; Lahiri GK
    Dalton Trans; 2010 May; 39(17):4232-42. PubMed ID: 20390188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis(acetylacetonato)bis(pyrazolato)ruthenate(iii) as a redox-active scorpionate ligand.
    Yoshida J; Sugawara K; Yuge H; Okabayashi J
    Dalton Trans; 2014 Nov; 43(42):16066-73. PubMed ID: 25238163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of a ruthenium(IV)-oxo complex by electron-transfer oxidation of a coordinatively saturated ruthenium(II) complex and detection of oxygen-rebound intermediates in C-H bond oxygenation.
    Kojima T; Nakayama K; Ikemura K; Ogura T; Fukuzumi S
    J Am Chem Soc; 2011 Aug; 133(30):11692-700. PubMed ID: 21696162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Structure and Substitution and Redox Reactivity of Imidazolate-Bridged Complexes of Pentacyanoferrate and Pentaammineruthenium.
    Parise AR; Baraldo LM; Olabe JA
    Inorg Chem; 1996 Aug; 35(17):5080-5086. PubMed ID: 11666718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic modification of the [Ru(II)(tpy)(bpy)(OH(2))](2+) scaffold: effects on catalytic water oxidation.
    Wasylenko DJ; Ganesamoorthy C; Henderson MA; Koivisto BD; Osthoff HD; Berlinguette CP
    J Am Chem Soc; 2010 Nov; 132(45):16094-106. PubMed ID: 20977265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Mediator and Effects of Temperature on ortho-C-N Bond Fusion Reactions of Aniline Using Ruthenium Templates: Isolation and Characterization of New Ruthenium Complexes of the in-Situ-Generated Ligands.
    Roy SK; Sengupta D; Rath SP; Saha T; Samanta S; Goswami S
    Inorg Chem; 2017 May; 56(9):4966-4977. PubMed ID: 28426213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam fac-[Ru(NO)Cl2(κ3N4,N8,N11(1-carboxypropyl)cyclam)]Cl·H2O.
    Doro FG; Pepe IM; Galembeck SE; Carlos RM; da Rocha ZN; Bertotti M; Tfouni E
    Dalton Trans; 2011 Jun; 40(24):6420-32. PubMed ID: 21584321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Electrochemical and Catalytic Features of BIAN- and BIAO-Derived Ruthenium Complexes.
    Hazari AS; Das A; Ray R; Agarwala H; Maji S; Mobin SM; Lahiri GK
    Inorg Chem; 2015 May; 54(10):4998-5012. PubMed ID: 25928272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and theoretical comprehension of diverse rate laws and reactivity gaps in Coriolus hirsutus laccase-catalyzed oxidation of acido and cyclometalated Ru(II) complexes.
    Kurzeev SA; Vilesov AS; Fedorova TV; Stepanova EV; Koroleva OV; Bukh C; Bjerrum MJ; Kurnikov IV; Ryabov AD
    Biochemistry; 2009 Jun; 48(21):4519-27. PubMed ID: 19351176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, structure characterization, and oxidation activity of ruthenium complexes with tripodal ligands bearing noncovalent interaction sites.
    Jitsukawa K; Oka Y; Yamaguchi S; Masuda H
    Inorg Chem; 2004 Dec; 43(25):8119-29. PubMed ID: 15578852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.