These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11670813)

  • 1. Enantioselective Sulfoxidation Catalyzed by Vanadium Haloperoxidases.
    ten Brink HB; Tuynman A; Dekker HL; Hemrika W; Izumi Y; Oshiro T; Schoemaker HE; Wever R
    Inorg Chem; 1998 Dec; 37(26):6780-6784. PubMed ID: 11670813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis.
    ten Brink HB; Schoemaker HE; Wever R
    Eur J Biochem; 2001 Jan; 268(1):132-8. PubMed ID: 11121113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis.
    ten Brink HB; Dekker HL; Schoemaker HE; Wever R
    J Inorg Biochem; 2000 May; 80(1-2):91-8. PubMed ID: 10885468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme.
    van Schijndel JW; Vollenbroek EG; Wever R
    Biochim Biophys Acta; 1993 Feb; 1161(2-3):249-56. PubMed ID: 8381670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Sulfoxidation Catalyzed by a Vanadium-Containing Bromoperoxidase.
    Andersson M; Willetts A; Allenmark S
    J Org Chem; 1997 Nov; 62(24):8455-8458. PubMed ID: 11671985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis.
    Messerschmidt A; Wever R
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):392-6. PubMed ID: 8552646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stability and steady-state kinetics of vanadium chloroperoxidase from the fungus Curvularia inaequalis.
    Van Schijndel JW; Barnett P; Roelse J; Vollenbroek EG; Wever R
    Eur J Biochem; 1994 Oct; 225(1):151-7. PubMed ID: 7925432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae.
    Punitha T; Phang SM; Juan JC; Beardall J
    Mar Biotechnol (NY); 2018 Jun; 20(3):282-303. PubMed ID: 29691674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis of oxo transfer to prochiral sulfides by oxovanadium(v) compounds that model the active center of haloperoxidases.
    Santoni G; Licini G; Rehder D
    Chemistry; 2003 Oct; 9(19):4700-8. PubMed ID: 14566876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.
    Isupov MN; Dalby AR; Brindley AA; Izumi Y; Tanabe T; Murshudov GN; Littlechild JA
    J Mol Biol; 2000 Jun; 299(4):1035-49. PubMed ID: 10843856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: catalytic effects from first and second coordination sphere mutations.
    Hasan Z; Renirie R; Kerkman R; Ruijssenaars HJ; Hartog AF; Wever R
    J Biol Chem; 2006 Apr; 281(14):9738-44. PubMed ID: 16455658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and expression of the gene for a vanadium-dependent bromoperoxidase from a marine macro-alga, Corallina pilulifera.
    Shimonishi M; Kuwamoto S; Inoue H; Wever R; Ohshiro T; Izumi Y; Tanabe T
    FEBS Lett; 1998 May; 428(1-2):105-10. PubMed ID: 9645486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective sulfoxidation using
    Salama S; Dishisha T; Habib MH; Abdelazem AZ; Bakeer W; Abdel-Latif M; Gaber Y
    RSC Adv; 2020 Sep; 10(54):32335-32344. PubMed ID: 35516510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines.
    Soedjak HS; Butler A
    Biochemistry; 1990 Aug; 29(34):7974-81. PubMed ID: 2261454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. Evidence for singlet oxygen production.
    Everett RR; Kanofsky JR; Butler A
    J Biol Chem; 1990 Mar; 265(9):4908-14. PubMed ID: 2318874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Sulfoxidation as a Probe for a Metal-Based Mechanism in H(2)O(2)-Dependent Oxidations Catalyzed by a Diiron Complex.
    Duboc-Toia C; Ménage S; Ho RY; Que L; Lambeaux C; Fontecave M
    Inorg Chem; 1999 Mar; 38(6):1261-1268. PubMed ID: 11670911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the Use of Peroxygenase from Oat Flour in Organic Synthesis: Enantioselective Oxidation of Sulfides.
    Sanfilippo C; Cernuto F; Patti A
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromoperoxidase activity of vanadate-substituted acid phosphatases from Shigella flexneri and Salmonella enterica ser. typhimurium.
    Tanaka N; Dumay V; Liao Q; Lange AJ; Wever R
    Eur J Biochem; 2002 Apr; 269(8):2162-7. PubMed ID: 11985594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the chirality of sulfoxidation catalyzed by bacterial flavoenzyme cyclohexanone monooxygenase and hog liver flavin adenine dinucleotide containing monooxygenase.
    Light DR; Waxman DJ; Walsh C
    Biochemistry; 1982 May; 21(10):2490-8. PubMed ID: 7093199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Enantioenriched Sulfoxides by an Oxidation-Reduction Enzymatic Cascade.
    Wang P; Han X; Liu X; Lin R; Chen Y; Sun Z; Zhang W
    Chemistry; 2022 Nov; 28(61):e202201997. PubMed ID: 35938698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.