BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11671262)

  • 1. Topological Aspects of the Skeletal Bonding in "Isocloso" Metallaboranes Containing "Anomalous" Numbers of Skeletal Electrons.
    King RB
    Inorg Chem; 1999 Nov; 38(22):5151-5153. PubMed ID: 11671262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some examples of unusual skeletal bonding topologies in metallaboranes containing two or three early transition metal vertices.
    King RB
    Inorg Chem; 2001 Jun; 40(12):2699-704. PubMed ID: 11375682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oblate deltahedra in dimetallaboranes: geometry and chemical bonding.
    King RB
    Inorg Chem; 2006 Oct; 45(20):8211-6. PubMed ID: 16999420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deviations from the Most Spherical Deltahedra in Rhenatricarbaboranes Having 2n + 2 Wadean Skeletal Electrons.
    Attia AAA; Lupan A; King RB
    Inorg Chem; 2017 Dec; 56(24):15015-15025. PubMed ID: 29185721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclopentadienyl ruthenium, rhodium, and iridium vertices in metallaboranes: geometry and chemical bonding.
    King RB
    Inorg Chem; 2004 Jul; 43(14):4241-7. PubMed ID: 15236536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molybdatricarbaboranes as examples of isocloso metallaborane deltahedra with three carbon vertices.
    Lupan A; King RB
    J Comput Chem; 2016 Jan; 37(1):64-9. PubMed ID: 26183318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited occurrence of isocloso deltahedra with 9 to 12 vertices in low-energy hypoelectronic diferradicarbaborane structures.
    Lupan A; King RB
    Inorg Chem; 2011 Oct; 50(19):9571-7. PubMed ID: 21894923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prevalence of isocloso deltahedra in low-energy hypoelectronic metalladicarbaboranes with a single metal vertex: manganese and rhenium derivatives.
    Lupan A; King RB
    Dalton Trans; 2012 Jun; 41(23):7073-81. PubMed ID: 22555801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyhedral Ferraboranes with Iron Carbonyl Vertices: Carbonyl Migration Processes in the Iron Tetracarbonyl Derivatives.
    Attia AAA; Lupan A; King RB
    J Phys Chem A; 2023 Jul; 127(28):5887-5898. PubMed ID: 37433263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tetracapped truncated tetrahedron in 16-vertex tetrametallaborane structures: spherical aromaticity with an isocloso rather than a closo skeletal electron count.
    Attia AAA; Lupan A; King RB; Ghosh S
    Phys Chem Chem Phys; 2019 Oct; 21(39):22022-22030. PubMed ID: 31559995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closo versus hypercloso metallaboranes: A DFT study.
    Shameema O; Jemmis ED
    Inorg Chem; 2009 Aug; 48(16):7818-27. PubMed ID: 19601587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From closo to isocloso structures and beyond in cobaltaboranes with 9 to 12 vertices.
    King RB; Silaghi-Dumitrescu I; Sovago I
    Inorg Chem; 2009 Nov; 48(21):10117-25. PubMed ID: 19791775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spherical Closo Deltahedra with Surface Metal-Metal Multiple Bonding versus Oblate Deltahedra with Internal Metal-Metal Bonding in Dichromadicarbaborane Structures: The Nature of Stone's Icosahedral Dichromadicarbaborane.
    Jákó S; Lupan A; Kun AZ; King RB
    Inorg Chem; 2019 Mar; 58(6):3825-3837. PubMed ID: 30821466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supraicosahedral polyhedra in metallaboranes: synthesis and structural characterization of 12-, 15-, and 16-vertex rhodaboranes.
    Roy DK; Mondal B; Shankhari P; Anju RS; Geetharani K; Mobin SM; Ghosh S
    Inorg Chem; 2013 Jun; 52(11):6705-12. PubMed ID: 23688289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deltahedral ferratricarbaboranes: analogues of ferrocene.
    Lupan A; King RB
    Dalton Trans; 2014 Apr; 43(13):4993-5000. PubMed ID: 24169923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms.
    Le Guennic B; Jiao H; Kahlal S; Saillard JY; Halet JF; Ghosh S; Shang M; Beatty AM; Rheingold AL; Fehlner TP
    J Am Chem Soc; 2004 Mar; 126(10):3203-17. PubMed ID: 15012150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhedral Dicobaltadithiaboranes and Dicobaltdiselenaboranes as Examples of Bimetallic
    Attia AAA; Lupan A; King RB
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine tuning of metallaborane geometries: chemistry of metallaboranes of early transition metals derived from metal halides and monoborane reagents.
    Bose SK; Geetharani K; Ramkumar V; Mobin SM; Ghosh S
    Chemistry; 2009 Dec; 15(48):13483-90. PubMed ID: 19894230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoelectronicity and Chirality in Dimetallaboranes of Group 9 Metals.
    Jákó S; Lupan A; Kun AZ; King RB
    Inorg Chem; 2017 Jan; 56(1):351-358. PubMed ID: 27936643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.