These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 11671403)

  • 1. Stereoselective Synthesis of 4'-Benzophenone-Substituted Nucleoside Analogs: Photoactive Models for Ribonucleotide Reductases.
    Lehmann TE; Berkessel A
    J Org Chem; 1997 Jan; 62(2):302-309. PubMed ID: 11671403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemistry of 4'-benzophenone-substituted nucleoside derivatives as models for ribonucleotide reductases: competing generation of 3'-radicals and photoenols.
    Lehmann TE; Müller G; Berkessel A
    J Org Chem; 2000 Apr; 65(8):2508-16. PubMed ID: 10789464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribonucleotide reductases and radical reactions.
    Fontecave M
    Cell Mol Life Sci; 1998 Jul; 54(7):684-95. PubMed ID: 9711234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase.
    Bennati M; Lendzian F; Schmittel M; Zipse H
    Biol Chem; 2005 Oct; 386(10):1007-22. PubMed ID: 16218873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site.
    Aurelius O; Johansson R; Bågenholm V; Lundin D; Tholander F; Balhuizen A; Beck T; Sahlin M; Sjöberg BM; Mulliez E; Logan DT
    PLoS One; 2015; 10(7):e0128199. PubMed ID: 26147435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.
    Sintchak MD; Arjara G; Kellogg BA; Stubbe J; Drennan CL
    Nat Struct Biol; 2002 Apr; 9(4):293-300. PubMed ID: 11875520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxygenative [1,2]-hydride shift rearrangements in nucleoside and sugar chemistry: analogy with the [1,2]-electron shift in the deoxygenation of ribonucleotides by ribonucleotide reductases.
    Robins MJ; Nowak I; Wnuk SF; Hansske F; Madej D
    J Org Chem; 2007 Oct; 72(22):8216-21. PubMed ID: 17918996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seven clues to the origin and structure of class-I ribonucleotide reductase intermediate X.
    Han WG; Liu T; Lovell T; Noodleman L
    J Inorg Biochem; 2006 Apr; 100(4):771-9. PubMed ID: 16504298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model Substrate/Inactivation Reactions for MoaA and Ribonucleotide Reductases: Loss of Bromo, Chloro, or Tosylate Groups from C2 of 1,5-Dideoxyhomoribofuranoses upon Generation of an α-Oxy Radical at C3.
    Wnuk SF; Mudgal MM; Nowak I; Robins MJ
    Molecules; 2020 May; 25(11):. PubMed ID: 32486052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dehydration of ribonucleotides catalyzed by ribonucleotide reductase: the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    Biophys J; 2006 Mar; 90(6):2109-19. PubMed ID: 16361339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase.
    Olshansky L; Pizano AA; Wei Y; Stubbe J; Nocera DG
    J Am Chem Soc; 2014 Nov; 136(46):16210-6. PubMed ID: 25353063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,1'-Bis(thymine)ferrocene Nucleoside: Synthesis and Study of Its Stereoselective Formation.
    Anisimov I; Saloman S; Hildebrandt A; Lang H; Trzybiński D; Woźniak K; Šakić D; Vrček V; Kowalski K
    Chempluschem; 2017 Jun; 82(6):859-866. PubMed ID: 31961572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    J Comput Chem; 2004 Dec; 25(16):2031-7. PubMed ID: 15481089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, function, and mechanism of ribonucleotide reductases.
    Kolberg M; Strand KR; Graff P; Andersson KK
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):1-34. PubMed ID: 15158709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli.
    Zimanyi CM; Chen PY; Kang G; Funk MA; Drennan CL
    Elife; 2016 Jan; 5():e07141. PubMed ID: 26754917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ribonucleotide reductase--transition enzymes from RNA metabolism to DNA metabolism].
    Kollarova M; Labudova O
    Biokhimiia; 1991 Dec; 56(12):2115-24. PubMed ID: 1725494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleotide reductases: substrate specificity by allostery.
    Reichard P
    Biochem Biophys Res Commun; 2010 May; 396(1):19-23. PubMed ID: 20494104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational enzymatic catalysis.
    Ramos MJ; Fernandes PA
    Acc Chem Res; 2008 Jun; 41(6):689-98. PubMed ID: 18465885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A glycyl radical site in the crystal structure of a class III ribonucleotide reductase.
    Logan DT; Andersson J; Sjöberg BM; Nordlund P
    Science; 1999 Mar; 283(5407):1499-504. PubMed ID: 10066165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribonucleotide reductases.
    Jordan A; Reichard P
    Annu Rev Biochem; 1998; 67():71-98. PubMed ID: 9759483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.