These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1167151)

  • 1. The major human erythrocyte membrane protein. Evidence for an S-shaped structure which traverses the membrane twice and contains a duplicated set of sites.
    Jenkins RE; Tanner JA
    Biochem J; 1975 Jun; 147(3):393-9. PubMed ID: 1167151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic-strength-dependent changes in the structure of the major protein of the human erythrocyte membrane.
    Jenkins RE; Tanner MJ
    Biochem J; 1977 Jan; 161(1):131-8. PubMed ID: 851415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The organization of the major protein of the human erythrocyte membrane.
    Boxer DH; Jenkins RE; Tanner MJ
    Biochem J; 1974 Mar; 137(3):531-4. PubMed ID: 4423057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the anion-transport protein of the human erythrocyte membrane. Further studies on the fragments produced by proteolytic digestion.
    Williams DG; Jenkins RE; Tanner MJ
    Biochem J; 1979 Aug; 181(2):477-93. PubMed ID: 496895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of the major protein of the human erythrocyte membrane. Characterization of the intact protein and major fragments.
    Jenkins RE; Tanner JA
    Biochem J; 1977 Jan; 161(1):139-47. PubMed ID: 851416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane.
    Marchesi VT; Tillack TW; Jackson RL; Segrest JP; Scott RE
    Proc Natl Acad Sci U S A; 1972 Jun; 69(6):1445-9. PubMed ID: 4504356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anion-transport protein of the human erythrocyte membrane. Studies on fragments produced by pepsin digestion.
    Tanner MJ; Williams DG; Kyle D
    Biochem J; 1979 Nov; 183(2):417-27. PubMed ID: 393252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The isolation and functional identification of a protein from the human erythrocyte 'ghost'.
    Tanner MJ; Gray WR
    Biochem J; 1971 Dec; 125(4):1109-17. PubMed ID: 5004149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A carbohydrate-deficient membrane glycoprotein in human erythrocytes of phenotype S-s-.
    Tanner MJ; Anstee DJ; Judson PA
    Biochem J; 1977 Jul; 165(1):157-61. PubMed ID: 889570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular features of the major glycoprotein of the human erythrocyte membrane.
    Marchesi VT; Jackson RL; Segrest JP; Kahane I
    Fed Proc; 1973 Aug; 32(8):1833-7. PubMed ID: 4718902
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of polypeptide disposition in human erythrocyte membranes employing membrane inversion.
    Litman GW; Litman RT; Merz DC
    Biochim Biophys Acta; 1975 Jul; 394(3):348-60. PubMed ID: 236786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolytic cleavage of [3H]nitrobenzylthioinosine-labelled nucleoside transporter in human erythrocytes.
    Janmohamed NS; Young JD; Jarvis SM
    Biochem J; 1985 Sep; 230(3):777-84. PubMed ID: 4062878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles.
    Segrest JP; Gulik-Krzywicki T; Sardet C
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3294-8. PubMed ID: 4528433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the primary structure of chicken erythrocyte histone fraction V.
    Greenaway PJ
    Biochem J; 1971 Sep; 124(2):319-25. PubMed ID: 5158498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The primary structure of high density apolipoprotein-glutamine-I.
    Baker HN; Delahunty T; Gotto AM; Jackson RL
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3631-4. PubMed ID: 4372630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological disposition of tyrosine 486 in anion exchanger from human erythrocytes.
    Kalo MS
    Biochemistry; 1996 Jan; 35(3):999-1009. PubMed ID: 8547283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation and partial characterization of some human erythrocyte membrane protein components.
    Tanner MJ; Owens D
    Biochem J; 1971 May; 122(5):40P-41P. PubMed ID: 5001950
    [No Abstract]   [Full Text] [Related]  

  • 18. Limited proteolysis of ribonuclease A with thermolysin in trifluoroethanol.
    Polverino de Laureto P; Scaramella E; De Filippis V; Bruix M; Rico M; Fontana A
    Protein Sci; 1997 Apr; 6(4):860-72. PubMed ID: 9098896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Visual rhodopsin. III. Complete amino acid sequence and topography in a membrane].
    Ovchinnikov IuA; Abdulaev NG; Feĭgina MIu; Artamonov ID; Bogachuk AS
    Bioorg Khim; 1983 Oct; 9(10):1331-40. PubMed ID: 6679757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric dimethylarginine (ADMA) in human blood: effects of extended haemodialysis in the critically ill patient with acute kidney injury, protein binding to human serum albumin and proteolysis by thermolysin.
    Sitar ME; Kayacelebi AA; Beckmann B; Kielstein JT; Tsikas D
    Amino Acids; 2015 Sep; 47(9):1983-93. PubMed ID: 25921952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.