These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11672302)

  • 1. Water-Soluble Cavitands: Synthesis of Methylene-Bridged Resorcin[4]arenes Containing Hydroxyls and Phosphates at Their Feet and Bromomethyls and Thiomethyls at Their Rims.
    Mezo AR; Sherman JC
    J Org Chem; 1998 Oct; 63(20):6824-6829. PubMed ID: 11672302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the size and morphology of supramolecular assemblies of viologen-resorcin[4]arene cavitands.
    Kashapov RR; Kharlamov SV; Sultanova ED; Mukhitova RK; Kudryashova YR; Zakharova LY; Ziganshina AY; Konovalov AI
    Chemistry; 2014 Oct; 20(43):14018-25. PubMed ID: 25208760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparative scale and convenient synthesis of a water-soluble, deep cavitand.
    Mosca S; Yu Y; Rebek J
    Nat Protoc; 2016 Aug; 11(8):1371-87. PubMed ID: 27388554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular capsules derived from resorcin[4]arenes by metal-coordination.
    Schröder T; Sahu SN; Mattay J
    Top Curr Chem; 2012; 319():99-124. PubMed ID: 22160427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigid tetraarylene-bridged cavitands from reduced-symmetry resorcin[4]arene derivatives.
    Smith JN; Lucas NT
    Chem Commun (Camb); 2018 May; 54(37):4716-4719. PubMed ID: 29683182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of redox-switchable resorcin[4]arene cavitands.
    Pochorovski I; Diederich F
    Acc Chem Res; 2014 Jul; 47(7):2096-105. PubMed ID: 24814219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational behavior of pyrazine-bridged and mixed-bridged cavitands: a general model for solvent effects on thermal "vase-kite" switching.
    Roncucci P; Pirondini L; Paderni G; Massera C; Dalcanale E; Azov VA; Diederich F
    Chemistry; 2006 Jun; 12(18):4775-84. PubMed ID: 16671048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition with metallo cavitands.
    Rahman FU; Li YS; Petsalakis ID; Theodorakopoulos G; Rebek J; Yu Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17648-17653. PubMed ID: 31427538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigidified Cavitand Hosts in Water: Bent Guests, Shape Selectivity, and Encapsulation.
    Yang JM; Chen YQ; Yu Y; Ballester P; Rebek J
    J Am Chem Soc; 2021 Nov; 143(46):19517-19524. PubMed ID: 34762414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially Directional Resorcin[4]arene Cavitand Glycoconjugates for Organic Catalysis.
    Husain AA; Maknenko AM; Bisht KS
    Chemistry; 2016 Apr; 22(18):6223-7. PubMed ID: 26933945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Megalo-Cavitands: Synthesis of Acridane[4]arenes and Formation of Large, Deep Cavitands for Selective C70 Uptake.
    Pfeuffer-Rooschüz J; Heim S; Prescimone A; Tiefenbacher K
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209885. PubMed ID: 35924716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands.
    Murray J; Kim K; Ogoshi T; Yao W; Gibb BC
    Chem Soc Rev; 2017 May; 46(9):2479-2496. PubMed ID: 28338130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of upper and lower rim functionalized [6]cavitands.
    Naumann C; Patrick BO; Sherman J
    Chemistry; 2002 Aug; 8(16):3717-23. PubMed ID: 12203298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles functionalized with deep-cavity cavitands: synthesis, characterization, and photophysical studies.
    Samanta SR; Kulasekharan R; Choudhury R; Jagadesan P; Jayaraj N; Ramamurthy V
    Langmuir; 2012 Aug; 28(32):11920-8. PubMed ID: 22809255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of Folded Molecules in Water.
    Yu Y; Rebek J
    Acc Chem Res; 2018 Dec; 51(12):3031-3040. PubMed ID: 30398326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-soluble cavitands promote hydrolyses of long-chain diesters.
    Shi Q; Mower MP; Blackmond DG; Rebek J
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9199-203. PubMed ID: 27482089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitands as Containers for α,ω-Dienes and Chaperones for Olefin Metathesis.
    Wu NW; Petsalakis ID; Theodorakopoulos G; Yu Y; Rebek J
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15091-15095. PubMed ID: 30246478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthene[
    Pfeuffer-Rooschüz J; Schmid L; Prescimone A; Tiefenbacher K
    JACS Au; 2021 Nov; 1(11):1885-1891. PubMed ID: 34841407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalizing pillar[n]arenes.
    Strutt NL; Zhang H; Schneebeli ST; Stoddart JF
    Acc Chem Res; 2014 Aug; 47(8):2631-42. PubMed ID: 24999824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances.
    Ryvlin D; Dumele O; Linke A; Fankhauser D; Schweizer WB; Diederich F; Waldvogel SR
    Chempluschem; 2017 Mar; 82(3):493-497. PubMed ID: 31962013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.