BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11672721)

  • 1. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response.
    Quinn TM; Morel V; Meister JJ
    J Biomech; 2001 Nov; 34(11):1463-9. PubMed ID: 11672721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static compression is associated with decreased diffusivity of dextrans in cartilage explants.
    Quinn TM; Kocian P; Meister JJ
    Arch Biochem Biophys; 2000 Dec; 384(2):327-34. PubMed ID: 11368320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solute convection in dynamically compressed cartilage.
    Evans RC; Quinn TM
    J Biomech; 2006; 39(6):1048-55. PubMed ID: 16549095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage.
    Evans RC; Quinn TM
    Biophys J; 2006 Aug; 91(4):1541-7. PubMed ID: 16679370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding enhances fluid and solute transport into buried articular cartilage contacts.
    Graham BT; Moore AC; Burris DL; Price C
    Osteoarthritis Cartilage; 2017 Dec; 25(12):2100-2107. PubMed ID: 28888900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage.
    Evans RC; Quinn TM
    Arch Biochem Biophys; 2005 Oct; 442(1):1-10. PubMed ID: 16157289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute transport across the articular surface of injured cartilage.
    Chin HC; Moeini M; Quinn TM
    Arch Biochem Biophys; 2013 Jul; 535(2):241-7. PubMed ID: 23643659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication.
    Greene GW; Zappone B; Zhao B; Söderman O; Topgaard D; Rata G; Israelachvili JN
    Biomaterials; 2008 Nov; 29(33):4455-62. PubMed ID: 18755507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ chondrocyte deformation with physiological compression of the feline patellofemoral joint.
    Clark AL; Barclay LD; Matyas JR; Herzog W
    J Biomech; 2003 Apr; 36(4):553-68. PubMed ID: 12600346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preservation and analysis of nonequilibrium solute concentration distributions within mechanically compressed cartilage explants.
    Quinn TM; Studer C; Grodzinsky AJ; Meister JJ
    J Biochem Biophys Methods; 2002 Jul; 52(2):83-95. PubMed ID: 12204413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature affects transport of polysaccharides and proteins in articular cartilage explants.
    Moeini M; Lee KB; Quinn TM
    J Biomech; 2012 Jul; 45(11):1916-23. PubMed ID: 22698833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A direct compression stimulator for articular cartilage and meniscal explants.
    Aufderheide AC; Athanasiou KA
    Ann Biomed Eng; 2006 Sep; 34(9):1463-74. PubMed ID: 16897420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.
    Garcia AM; Frank EH; Grimshaw PE; Grodzinsky AJ
    Arch Biochem Biophys; 1996 Sep; 333(2):317-25. PubMed ID: 8809069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins.
    Wong M; Siegrist M; Cao X
    Matrix Biol; 1999 Aug; 18(4):391-9. PubMed ID: 10517186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilage in vitro.
    Chen AC; Sah RL
    J Orthop Res; 1998 Sep; 16(5):542-50. PubMed ID: 9820276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage.
    Kokkonen HT; Chin HC; Töyräs J; Jurvelin JS; Quinn TM
    Ann Biomed Eng; 2017 Apr; 45(4):973-981. PubMed ID: 27826673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and dynamic compression regulate cartilage metabolism of PRoteoGlycan 4 (PRG4).
    Nugent GE; Schmidt TA; Schumacher BL; Voegtline MS; Bae WC; Jadin KD; Sah RL
    Biorheology; 2006; 43(3,4):191-200. PubMed ID: 16912393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain, but not stress, to pericellular and cellular regions.
    Argote PF; Kaplan JT; Poon A; Xu X; Cai L; Emery NC; Pierce DM; Neu CP
    Osteoarthritis Cartilage; 2019 Dec; 27(12):1822-1830. PubMed ID: 31526876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.