These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11672779)

  • 1. Isochromosome 1q as an early genetic event in a child with intracranial ependymoma characterized by molecular cytogenetics.
    Granzow M; Popp S; Weber S; Schoell B; Holtgreve-Grez H; Senf L; Hager D; Boschert J; Scheurlen W; Jauch A
    Cancer Genet Cytogenet; 2001 Oct; 130(1):79-83. PubMed ID: 11672779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of chromosome 1q gain in intracranial ependymomas.
    Rajeshwari M; Sharma MC; Kakkar A; Nambirajan A; Suri V; Sarkar C; Singh M; Saran RK; Gupta RK
    J Neurooncol; 2016 Apr; 127(2):271-8. PubMed ID: 26725097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma.
    Reardon DA; Entrekin RE; Sublett J; Ragsdale S; Li H; Boyett J; Kepner JL; Look AT
    Genes Chromosomes Cancer; 1999 Mar; 24(3):230-7. PubMed ID: 10451703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma.
    Ward S; Harding B; Wilkins P; Harkness W; Hayward R; Darling JL; Thomas DG; Warr T
    Genes Chromosomes Cancer; 2001 Sep; 32(1):59-66. PubMed ID: 11477662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel chromosomal abnormalities and prognostic cytogenetics markers in intracranial pediatric ependymoma.
    Pezzolo A; Capra V; Raso A; Morandi F; Parodi F; Gambini C; Nozza P; Giangaspero F; Cama A; Pistoia V; Garrè ML
    Cancer Lett; 2008 Mar; 261(2):235-43. PubMed ID: 18179864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copy number gain of 1q25 predicts poor progression-free survival for pediatric intracranial ependymomas and enables patient risk stratification: a prospective European clinical trial cohort analysis on behalf of the Children's Cancer Leukaemia Group (CCLG), Societe Francaise d'Oncologie Pediatrique (SFOP), and International Society for Pediatric Oncology (SIOP).
    Kilday JP; Mitra B; Domerg C; Ward J; Andreiuolo F; Osteso-Ibanez T; Mauguen A; Varlet P; Le Deley MC; Lowe J; Ellison DW; Gilbertson RJ; Coyle B; Grill J; Grundy RG
    Clin Cancer Res; 2012 Apr; 18(7):2001-11. PubMed ID: 22338015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas.
    Grill J; Avet-Loiseau H; Lellouch-Tubiana A; Sévenet N; Terrier-Lacombe MJ; Vénuat AM; Doz F; Sainte-Rose C; Kalifa C; Vassal G
    Cancer Genet Cytogenet; 2002 Jul; 136(2):121-5. PubMed ID: 12237235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular staging of intracranial ependymoma in children and adults.
    Korshunov A; Witt H; Hielscher T; Benner A; Remke M; Ryzhova M; Milde T; Bender S; Wittmann A; Schöttler A; Kulozik AE; Witt O; von Deimling A; Lichter P; Pfister S
    J Clin Oncol; 2010 Jul; 28(19):3182-90. PubMed ID: 20516456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of 2 Novel Ependymoma Cell Lines With Chromosome 1q Gain Derived From Posterior Fossa Tumors of Childhood.
    Amani V; Donson AM; Lummus SC; Prince EW; Griesinger AM; Witt DA; Hankinson TC; Handler MH; Dorris K; Vibhakar R; Foreman NK; Hoffman LM
    J Neuropathol Exp Neurol; 2017 Jul; 76(7):595-604. PubMed ID: 28863455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas.
    Puget S; Grill J; Valent A; Bieche I; Dantas-Barbosa C; Kauffmann A; Dessen P; Lacroix L; Geoerger B; Job B; Dirven C; Varlet P; Peyre M; Dirks PB; Sainte-Rose C; Vassal G
    J Clin Oncol; 2009 Apr; 27(11):1884-92. PubMed ID: 19289631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic characterization of ependymomas reveals 6q loss as the most common aberration.
    Olsen TK; Gorunova L; Meling TR; Micci F; Scheie D; Due-Tønnessen B; Heim S; Brandal P
    Oncol Rep; 2014 Aug; 32(2):483-90. PubMed ID: 24939246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of chromosome 22 in ependymomas.
    Wernicke C; Thiel G; Lozanova T; Vogel S; Kintzel D; Jänisch W; Lehmann K; Witkowski R
    Cancer Genet Cytogenet; 1995 Feb; 79(2):173-6. PubMed ID: 7889515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping.
    Bayani J; Zielenska M; Marrano P; Kwan Ng Y; Taylor MD; Jay V; Rutka JT; Squire JA
    J Neurosurg; 2000 Sep; 93(3):437-48. PubMed ID: 10969942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome 1q gain and tenascin-C expression are candidate markers to define different risk groups in pediatric posterior fossa ependymoma.
    Araki A; Chocholous M; Gojo J; Dorfer C; Czech T; Heinzl H; Dieckmann K; Ambros IM; Ambros PF; Slavc I; Haberler C
    Acta Neuropathol Commun; 2016 Aug; 4(1):88. PubMed ID: 27550150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal aberrations evaluated by CGH, FISH and GTG-banding in a case of AIDS-related Burkitt's lymphoma.
    Zunino A; Viaggi S; Ottaggio L; Fronza G; Schenone A; Roncella S; Abbondandolo A
    Haematologica; 2000 Mar; 85(3):250-5. PubMed ID: 10702812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization.
    Scheil S; Brüderlein S; Eicker M; Herms J; Herold-Mende C; Steiner HH; Barth TF; Möller P
    Brain Pathol; 2001 Apr; 11(2):133-43. PubMed ID: 11303789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time quantitative PCR analysis of pediatric ependymomas identifies novel candidate genes including TPR at 1q25 and CHIBBY at 22q12-q13.
    Karakoula K; Suarez-Merino B; Ward S; Phipps KP; Harkness W; Hayward R; Thompson D; Jacques TS; Harding B; Beck J; Thomas DG; Warr TJ
    Genes Chromosomes Cancer; 2008 Nov; 47(11):1005-22. PubMed ID: 18663750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma.
    Mendrzyk F; Korshunov A; Benner A; Toedt G; Pfister S; Radlwimmer B; Lichter P
    Clin Cancer Res; 2006 Apr; 12(7 Pt 1):2070-9. PubMed ID: 16609018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific chromosomal imbalances as detected by array CGH in ependymomas in association with tumor location, histological subtype and grade.
    Rousseau A; Idbaih A; Ducray F; Crinière E; Fèvre-Montange M; Jouvet A; Delattre JY
    J Neurooncol; 2010 May; 97(3):353-64. PubMed ID: 19865800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytogenetic findings in a supratentorial ependymoma.
    Dal Cin P; Sandberg AA
    Cancer Genet Cytogenet; 1988 Feb; 30(2):289-93. PubMed ID: 3342386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.