These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11672951)

  • 1. Correlation of "in vitro" release and "in vivo" absorption characteristics of rifampicin from ethylcellulose coated nonpareil beads.
    Sreenivasa Rao B; Seshasayana A; Pardha Saradhi SV; Ravi Kumar N; Narayan CP; Ramana Murthy KV
    Int J Pharm; 2001 Nov; 230(1-2):1-9. PubMed ID: 11672951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelatin nanocarriers as potential vectors for effective management of tuberculosis.
    Saraogi GK; Gupta P; Gupta UD; Jain NK; Agrawal GP
    Int J Pharm; 2010 Jan; 385(1-2):143-9. PubMed ID: 19819315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on rifampicin release from ethylcellulose coated nonpareil beads.
    Rao BS; Murthy KV
    Int J Pharm; 2002 Jan; 231(1):97-106. PubMed ID: 11719018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and in vitro-in vivo relationship of controlled-release microparticles loaded with tramadol hydrochloride.
    Naeem Aamir M; Ahmad M; Akhtar N; Murtaza G; Khan SA; Shahiq-uz-Zaman ; Nokhodchi A
    Int J Pharm; 2011 Apr; 407(1-2):38-43. PubMed ID: 21241789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage forms.
    Agrawal S; Panchagnula R
    Biopharm Drug Dispos; 2005 Nov; 26(8):321-34. PubMed ID: 16059874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biopharmaceutic and pharmacokinetic aspects of variable bioavailability of rifampicin.
    Panchagnula R; Agrawal S
    Int J Pharm; 2004 Mar; 271(1-2):1-4. PubMed ID: 15129967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solidified SNEDDS for the oral delivery of rifampicin: Evaluation, proof of concept, in vivo kinetics, and in silico GastroPlus
    Hussain A; Shakeel F; Singh SK; Alsarra IA; Faruk A; Alanazi FK; Peter Christoper GV
    Int J Pharm; 2019 Jul; 566():203-217. PubMed ID: 31132448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rifampicin polylactic acid microspheres for lung targeting.
    Zhang W; Jiang X; Hu J; Fu C
    J Microencapsul; 2000; 17(6):785-8. PubMed ID: 11063425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety.
    Singh H; Jindal S; Singh M; Sharma G; Kaur IP
    Int J Pharm; 2015 May; 485(1-2):138-51. PubMed ID: 25769294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro-In Vivo Evaluation of Novel Co-spray Dried Rifampicin Phospholipid Lipospheres for Oral Delivery.
    Singh C; Koduri LV; Bhatt TD; Jhamb SS; Mishra V; Gill MS; Suresh S
    AAPS PharmSciTech; 2017 Jan; 18(1):138-146. PubMed ID: 26902373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on a reverse micelle-lamellar phase transition based depot preparation of rifampicin.
    Uppadhyay AK; Omray LK; Khopade AJ; Jain NK
    Pharmazie; 1997 Dec; 52(12):961-2. PubMed ID: 9442561
    [No Abstract]   [Full Text] [Related]  

  • 12. Discrepancy among dissolution rates of commercial tablets as a function of dissolution method. part 6: rifampicin.
    Ammar HO; Khalil RM
    Pharmazie; 1996 Mar; 51(3):165-8. PubMed ID: 8900866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biowaiver monographs for immediate release solid oral dosage forms: rifampicin.
    Becker C; Dressman JB; Junginger HE; Kopp S; Midha KK; Shah VP; Stavchansky S; Barends DM
    J Pharm Sci; 2009 Jul; 98(7):2252-67. PubMed ID: 19160441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple emulsion based systems for prolonged delivery of rifampicin: in vitro and in vivo characterization.
    Nakhare S; Vyas SP
    Pharmazie; 1997 Mar; 52(3):224-6. PubMed ID: 9109169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and study of rifampicin oral controlled release formulations.
    Hiremath SP; Saha RN
    Drug Deliv; 2004; 11(5):311-7. PubMed ID: 15742556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative bioavailability of three different preparations of rifampicin.
    Pähkla R; Lambert J; Ansko P; Winstanley P; Davies PD; Kiivet RA
    J Clin Pharm Ther; 1999 Jun; 24(3):219-25. PubMed ID: 10438182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of sustained release rifampicin microparticles for inhalation.
    Son YJ; McConville JT
    J Pharm Pharmacol; 2012 Sep; 64(9):1291-302. PubMed ID: 22881441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended release dosage form of glipizide: development and validation of a level A in vitro-in vivo correlation.
    Ghosh A; Bhaumik UK; Bose A; Mandal U; Gowda V; Chatterjee B; Chakrabarty US; Pal TK
    Biol Pharm Bull; 2008 Oct; 31(10):1946-51. PubMed ID: 18827360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma pooling to expedite bioequivalence estimation of rifampicin in fixed dose combinations.
    Panchagnula R; Parmar J; Kaur JK; Singh I; Bhade SR
    Methods Find Exp Clin Pharmacol; 2006 Apr; 28(3):161-7. PubMed ID: 16810342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation of novel sustained release rifampicin-loaded solid lipid microparticles based on structured lipid matrices from Moringa oleifera.
    Onyishi IV; Chime SA; Ogudiegwu EO
    Pharm Dev Technol; 2015; 20(5):546-54. PubMed ID: 24964095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.