These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11673037)
21. Development and Characterization of Nanoembedded Microparticles for Pulmonary Delivery of Antitubercular Drugs against Experimental Tuberculosis. Goyal AK; Garg T; Rath G; Gupta UD; Gupta P Mol Pharm; 2015 Nov; 12(11):3839-50. PubMed ID: 26436948 [TBL] [Abstract][Full Text] [Related]
22. The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Lavelle EC; Yeh MK; Coombes AG; Davis SS Vaccine; 1999 Feb; 17(6):512-29. PubMed ID: 10075157 [TBL] [Abstract][Full Text] [Related]
23. Reparation of Isoniazid and Rifampicin Combinatorial Therapy-Induced Hepatotoxic Effects by Bacopa monnieri. Evan Prince S; Udhaya LB; Sunitha PS; Arumugam G Pharmacology; 2016; 98(1-2):29-34. PubMed ID: 27007136 [TBL] [Abstract][Full Text] [Related]
24. Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin. Pai RV; Jain RR; Bannalikar AS; Menon MD J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):179-95. PubMed ID: 26406162 [TBL] [Abstract][Full Text] [Related]
25. Chemotherapeutic efficacy of poly (DL-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Sharma A; Pandey R; Sharma S; Khuller GK Int J Antimicrob Agents; 2004 Dec; 24(6):599-604. PubMed ID: 15555884 [TBL] [Abstract][Full Text] [Related]
26. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Doan TV; Couet W; Olivier JC Int J Pharm; 2011 Jul; 414(1-2):112-7. PubMed ID: 21596123 [TBL] [Abstract][Full Text] [Related]
27. Biodegradable polymeric microparticles for drug delivery and vaccine formulation: the surface attachment of hydrophilic species using the concept of poly(ethylene glycol) anchoring segments. Coombes AG; Tasker S; Lindblad M; Holmgren J; Hoste K; Toncheva V; Schacht E; Davies MC; Illum L; Davis SS Biomaterials; 1997 Sep; 18(17):1153-61. PubMed ID: 9259512 [TBL] [Abstract][Full Text] [Related]
28. Effect of different oral doses of isoniazid-rifampicin in rats. Rana SV; Pal R; Vaiphie K; Singh K Mol Cell Biochem; 2006 Sep; 289(1-2):39-47. PubMed ID: 16583132 [TBL] [Abstract][Full Text] [Related]
29. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Deol P; Khuller GK Biochim Biophys Acta; 1997 Mar; 1334(2-3):161-72. PubMed ID: 9101710 [TBL] [Abstract][Full Text] [Related]
30. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis. Chimote G; Banerjee R J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):1-10. PubMed ID: 20524179 [TBL] [Abstract][Full Text] [Related]
31. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects. Qurrat-ul-Ain ; Sharma S; Khuller GK; Garg SK J Antimicrob Chemother; 2003 Apr; 51(4):931-8. PubMed ID: 12654730 [TBL] [Abstract][Full Text] [Related]
33. Rifampicin-loaded 'flower-like' polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Moretton MA; Hocht C; Taira C; Sosnik A Nanomedicine (Lond); 2014 Aug; 9(11):1635-50. PubMed ID: 24410279 [TBL] [Abstract][Full Text] [Related]
34. Prolonged release biodegradable vesicular carriers for rifampicin--formulation and kinetics of release. Kamath MP; Shenoy BD; Tiwari SB; Karki R; Udupa N; Kotian M Indian J Exp Biol; 2000 Feb; 38(2):113-8. PubMed ID: 11218826 [TBL] [Abstract][Full Text] [Related]
35. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Choonara YE; Pillay V; Ndesendo VM; du Toit LC; Kumar P; Khan RA; Murphy CS; Jarvis DL Colloids Surf B Biointerfaces; 2011 Oct; 87(2):243-54. PubMed ID: 21664111 [TBL] [Abstract][Full Text] [Related]
36. Comparative bioequivalence study of rifampicin and isoniazid combinations in healthy volunteers. Padgaonkar KA; Revankar SN; Bhatt AD; Vaz JA; Desai ND; D'Sa S; Shah V; Gandewar K Int J Tuberc Lung Dis; 1999 Jul; 3(7):627-31. PubMed ID: 10423226 [TBL] [Abstract][Full Text] [Related]
37. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity. Guo YX; Xu XF; Zhang QZ; Li C; Deng Y; Jiang P; He LY; Peng WX Toxicol Mech Methods; 2015; 25(5):382-7. PubMed ID: 25886055 [TBL] [Abstract][Full Text] [Related]
38. Drugs/lamellae interface influences the inner structure of double-loaded liposomes for inhaled anti-TB therapy: An in-depth small-angle neutron scattering investigation. Truzzi E; Meneghetti F; Mori M; Costantino L; Iannuccelli V; Maretti E; Domenici F; Castellano C; Rogers S; Capocefalo A; Leo E J Colloid Interface Sci; 2019 Apr; 541():399-406. PubMed ID: 30710822 [TBL] [Abstract][Full Text] [Related]
39. Protective efficacy of mycobacterial 71-kDa cell wall associated protein using poly (DL-lactide-co-glycolide) microparticles as carrier vehicles. Dhiman N; Khuller GK FEMS Immunol Med Microbiol; 1998 May; 21(1):19-28. PubMed ID: 9657317 [TBL] [Abstract][Full Text] [Related]
40. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Saraogi GK; Gupta P; Gupta UD; Jain NK; Agrawal GP Int J Pharm; 2010 Jan; 385(1-2):143-9. PubMed ID: 19819315 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]