BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 11673437)

  • 1. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake.
    Kasai Y; Inoue J; Harayama S
    J Bacteriol; 2001 Nov; 183(22):6662-6. PubMed ID: 11673437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products.
    Harayama S; Rekik M; Wubbolts M; Rose K; Leppik RA; Timmis KN
    J Bacteriol; 1989 Sep; 171(9):5048-55. PubMed ID: 2549010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New derivatives of TOL plasmid pWW0.
    Sarand I; Mäe A; Vilu R; Heinaru A
    J Gen Microbiol; 1993 Oct; 139(10):2379-85. PubMed ID: 8254307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways.
    Bertini L; Cafaro V; Proietti S; Caporale C; Capasso P; Caruso C; Di Donato A
    Biochimie; 2013 Feb; 95(2):241-50. PubMed ID: 23009925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWW0 from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution.
    Harayama S; Rekik M
    Mol Gen Genet; 1993 May; 239(1-2):81-9. PubMed ID: 8510667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Pseudomonas putida mt-2.
    Velázquez F; Parro V; de Lorenzo V
    Mol Microbiol; 2005 Sep; 57(6):1557-69. PubMed ID: 16135224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways.
    Aemprapa S; Williams PA
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1387-1396. PubMed ID: 9611813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organisation of the tmb catabolic operons of Pseudomonas putida TMB and evolutionary relationship with the xyl operons of the TOL plasmid pWW0.
    Favaro R; Bernasconi C; Passini N; Bertoni G; Bestetti G; Galli E; Dehò G
    Gene; 1996 Dec; 182(1-2):189-93. PubMed ID: 8982087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene.
    Silva-Rocha R; de Jong H; Tamames J; de Lorenzo V
    BMC Syst Biol; 2011 Nov; 5():191. PubMed ID: 22078029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWW0 and pWW53.
    Keil H; Keil S; Pickup RW; Williams PA
    J Bacteriol; 1985 Nov; 164(2):887-95. PubMed ID: 2997136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of the TOL meta-cleavage pathway functions of Pseudomonas putida strain PaW1 (pWW0) during growth on toluene.
    Brinkmann U; Ramos JL; Reineke W
    J Basic Microbiol; 1994; 34(5):303-9. PubMed ID: 7996396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2.
    Kim J; Pérez-Pantoja D; Silva-Rocha R; Oliveros JC; de Lorenzo V
    Environ Microbiol; 2016 Oct; 18(10):3327-3341. PubMed ID: 26373670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochasticity of TOL plasmid catabolic promoters sets a bimodal expression regime in Pseudomonas putida mt-2 exposed to m-xylene.
    Silva-Rocha R; de Lorenzo V
    Mol Microbiol; 2012 Oct; 86(1):199-211. PubMed ID: 22845424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWW0) growing on succinate in continuous culture: evidence of carbon catabolite repression control.
    Duetz WA; Marqués S; de Jong C; Ramos JL; van Andel JG
    J Bacteriol; 1994 Apr; 176(8):2354-61. PubMed ID: 8157604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and benzyl alcohol by the xylA product.
    Harayama S; Leppik RA; Rekik M; Mermod N; Lehrbach PR; Reineke W; Timmis KN
    J Bacteriol; 1986 Aug; 167(2):455-61. PubMed ID: 3015870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and functional mapping of two cointegrate plasmids derived from RP4 and TOL plasmid pDK1.
    Shaw LE; Williams PA
    J Gen Microbiol; 1988 Sep; 134(9):2463-74. PubMed ID: 3076182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XylUW, two genes at the start of the upper pathway operon of TOL plasmid pWW0, appear to play no essential part in determining its catabolic phenotype.
    Williams PA; Shaw LM; Pitt CW; Vrecl M
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():101-107. PubMed ID: 9025283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of the toluene-xylene catabolic genes of TOL plasmid pWW0 during growth of Pseudomonas putida on benzoate is due to a selective growth advantage of 'cured' segregants.
    Williams PA; Taylor SD; Gibb LE
    J Gen Microbiol; 1988 Jul; 134(7):2039-48. PubMed ID: 3246596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rpoS gene regulates OP2, an operon for the lower pathway of xylene catabolism on the TOL plasmid, and the stress response in Pseudomonas putida mt-2.
    Miura K; Inouye S; Nakazawa A
    Mol Gen Genet; 1998 Jul; 259(1):72-8. PubMed ID: 9738882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways.
    Marqués S; Ramos JL
    Mol Microbiol; 1993 Sep; 9(5):923-9. PubMed ID: 7934920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.