These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11673444)

  • 1. Hemin reconstitutes proton extrusion in an H(+)-ATPase-negative mutant of Lactococcus lactis.
    Blank LM; Koebmann BJ; Michelsen O; Nielsen LK; Jensen PR
    J Bacteriol; 2001 Nov; 183(22):6707-9. PubMed ID: 11673444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis.
    Koebmann BJ; Nilsson D; Kuipers OP; Jensen PR
    J Bacteriol; 2000 Sep; 182(17):4738-43. PubMed ID: 10940012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a mutant of Lactococcus lactis with reduced membrane-bound ATPase activity under acidic conditions.
    Amachi S; Ishikawa K; Toyoda S; Kagawa Y; Yokota A; Tomita F
    Biosci Biotechnol Biochem; 1998 Aug; 62(8):1574-80. PubMed ID: 9757564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.
    Shi W; Li Y; Gao X; Fu R
    Biotechnol Lett; 2016 Mar; 38(3):495-501. PubMed ID: 26585330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis.
    Koebmann BJ; Solem C; Pedersen MB; Nilsson D; Jensen PR
    Appl Environ Microbiol; 2002 Sep; 68(9):4274-82. PubMed ID: 12200276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of hemin effect on lactate reduction in Lactococcus lactis.
    Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S
    J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport.
    Brooijmans RJ; Poolman B; Schuurman-Wolters GK; de Vos WM; Hugenholtz J
    J Bacteriol; 2007 Jul; 189(14):5203-9. PubMed ID: 17496098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand.
    Liu J; Kandasamy V; Würtz A; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9509-9517. PubMed ID: 27344595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of malolactic activity is a characteristic of H+-ATPase-deficient mutants of the lactic acid bacterium Oenococcus oeni.
    Galland D; Tourdot-Maréchal R; Abraham M; Chu KS; Guzzo J
    Appl Environ Microbiol; 2003 Apr; 69(4):1973-9. PubMed ID: 12676672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin.
    Lan CQ; Oddone G; Mills DA; Block DE
    Biotechnol Bioeng; 2006 Dec; 95(6):1070-80. PubMed ID: 16807924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial mechanism of action of transferrins: selective inhibition of H+-ATPase.
    Andrés MT; Fierro JF
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4335-42. PubMed ID: 20625147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition.
    Razvi A; Zhang Z; Lan CQ
    Biotechnol Prog; 2008; 24(4):852-8. PubMed ID: 19194896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis.
    O'Sullivan E; Condon S
    Appl Environ Microbiol; 1999 Jun; 65(6):2287-93. PubMed ID: 10347003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in acid tolerance of Lactococcus lactis during growth at constant pH.
    Alemayehu D; O'Sullivan E; Condon S
    Int J Food Microbiol; 2000 Apr; 55(1-3):215-21. PubMed ID: 10791746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase.
    Arioli S; Zambelli D; Guglielmetti S; De Noni I; Pedersen MB; Pedersen PD; Dal Bello F; Mora D
    Appl Environ Microbiol; 2013 Jan; 79(1):376-80. PubMed ID: 23064338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of wild-type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis.
    Mazurkiewicz P; Driessen AJ; Konings WN
    Biochim Biophys Acta; 2004 Oct; 1658(3):252-61. PubMed ID: 15450963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases.
    Kaim G; Matthey U; Dimroth P
    EMBO J; 1998 Feb; 17(3):688-95. PubMed ID: 9450994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered metabolism in a Streptococcus lactis C2 mutant deficient in lactic dehydrogenase.
    McKay LL; Baldwin KA
    J Dairy Sci; 1974 Feb; 57(2):181-6. PubMed ID: 4211787
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.