These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 11673444)
21. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. Duwat P; Sourice S; Cesselin B; Lamberet G; Vido K; Gaudu P; Le Loir Y; Violet F; Loubière P; Gruss A J Bacteriol; 2001 Aug; 183(15):4509-16. PubMed ID: 11443085 [TBL] [Abstract][Full Text] [Related]
22. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis. Li L; Ma Y J Dairy Sci; 2014 Oct; 97(10):5975-82. PubMed ID: 25064652 [TBL] [Abstract][Full Text] [Related]
23. Growth stimulation of a proteinase positive Lactococcus lactis strain by a proteinase negative Lactococcus lactis strain. Picon A; Nuñez M Int J Food Microbiol; 2007 Nov; 119(3):308-13. PubMed ID: 17905459 [TBL] [Abstract][Full Text] [Related]
24. [Lactococcus lactis capable of respiring in the presence of heme]. Liang F; Fei L; Guicheng H Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1256-9. PubMed ID: 19062653 [TBL] [Abstract][Full Text] [Related]
25. Biotransformation of L-tyrosine to tyramine by the growing cells of Lactococcus lactis. Thakur M; Azmi W Acta Microbiol Immunol Hung; 2009 Mar; 56(1):101-14. PubMed ID: 19388561 [TBL] [Abstract][Full Text] [Related]
26. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH. Mercade M; Cocaign-Bousquet M; Loubière P J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685 [TBL] [Abstract][Full Text] [Related]
27. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions. Papagianni M; Avramidis N Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530 [TBL] [Abstract][Full Text] [Related]
28. The efflux of a fluorescent probe is catalyzed by an ATP-driven extrusion system in Lactococcus lactis. Molenaar D; Bolhuis H; Abee T; Poolman B; Konings WN J Bacteriol; 1992 May; 174(10):3118-24. PubMed ID: 1577684 [TBL] [Abstract][Full Text] [Related]
29. Production and separation of dipeptidyl peptidase IV from Lactococcus lactis: scale up for industrial production. Ustün O; Ongen G Bioprocess Biosyst Eng; 2012 Oct; 35(8):1417-27. PubMed ID: 22847360 [TBL] [Abstract][Full Text] [Related]
30. [Membrane proton conductivity and energy-dependent fluxes of hydrogen ions in bacteria Enterococcus hirae grown in media with different pH values]. Biofizika; 2005; 50(4):680-3. PubMed ID: 16212060 [TBL] [Abstract][Full Text] [Related]
31. Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH. Morsomme P; de Kerchove d'Exaerde A; De Meester S; Thinès D; Goffeau A; Boutry M EMBO J; 1996 Oct; 15(20):5513-26. PubMed ID: 8896445 [TBL] [Abstract][Full Text] [Related]
32. Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Turner MS; Tan YP; Giffard PM Appl Environ Microbiol; 2007 Oct; 73(19):6144-9. PubMed ID: 17675432 [TBL] [Abstract][Full Text] [Related]
33. [Glutathione plays an anti-oxidant role in Lactococcus lactis]. Fu RY; Chen J; Li Y Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):379-84. PubMed ID: 16933605 [TBL] [Abstract][Full Text] [Related]
34. Increasing acidification of nonreplicating Lactococcus lactis deltathyA mutants by incorporating ATPase activity. Pedersen MB; Koebmann BJ; Jensen PR; Nilsson D Appl Environ Microbiol; 2002 Nov; 68(11):5249-57. PubMed ID: 12406711 [TBL] [Abstract][Full Text] [Related]
35. Obligatory coupling between proton entry and the synthesis of adenosine 5'-triphosphate in Streptococcus lactis. Maloney PC J Bacteriol; 1977 Nov; 132(2):564-75. PubMed ID: 21165 [TBL] [Abstract][Full Text] [Related]
36. Role of scalar protons in metabolic energy generation in lactic acid bacteria. Lolkema JS; Poolman B; Konings WN J Bioenerg Biomembr; 1995 Aug; 27(4):467-73. PubMed ID: 8595982 [TBL] [Abstract][Full Text] [Related]
37. Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Berlec A; Tompa G; Slapar N; Fonović UP; Rogelj I; Strukelj B Lett Appl Microbiol; 2008 Feb; 46(2):227-31. PubMed ID: 18215220 [TBL] [Abstract][Full Text] [Related]
38. Aerobic growth thermograms of Streptococcus lactis obtained with a complex medium containing glucose. Monk PR J Bacteriol; 1978 Aug; 135(2):373-8. PubMed ID: 98515 [TBL] [Abstract][Full Text] [Related]