BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11673452)

  • 1. Membrane protein topology of oleosin is constrained by its long hydrophobic domain.
    Abell BM; High S; Moloney MM
    J Biol Chem; 2002 Mar; 277(10):8602-10. PubMed ID: 11673452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting.
    Abell BM; Holbrook LA; Abenes M; Murphy DJ; Hills MJ; Moloney MM
    Plant Cell; 1997 Aug; 9(8):1481-93. PubMed ID: 9286116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane topology and sequence requirements for oil body targeting of oleosin.
    Abell BM; Hahn M; Holbrook LA; Moloney MM
    Plant J; 2004 Feb; 37(4):461-70. PubMed ID: 14756765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism.
    Beaudoin F; Napier JA
    Planta; 2002 Jun; 215(2):293-303. PubMed ID: 12029479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique Motifs and Length of Hairpin in Oleosin Target the Cytosolic Side of Endoplasmic Reticulum and Budding Lipid Droplet.
    Huang CY; Huang AHC
    Plant Physiol; 2017 Aug; 174(4):2248-2260. PubMed ID: 28611060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum.
    Vergères G; Ramsden J; Waskell L
    J Biol Chem; 1995 Feb; 270(7):3414-22. PubMed ID: 7852428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein.
    Meacock SL; Lecomte FJ; Crawshaw SG; High S
    Mol Biol Cell; 2002 Dec; 13(12):4114-29. PubMed ID: 12475939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 12-residue-long polyleucine tail is sufficient to anchor synaptobrevin to the endoplasmic reticulum membrane.
    Whitley P; Grahn E; Kutay U; Rapoport TA; von Heijne G
    J Biol Chem; 1996 Mar; 271(13):7583-6. PubMed ID: 8631791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A part of the transmembrane domain of pro-TNF can function as a cleavable signal sequence that generates a biologically active secretory form of TNF.
    Ishisaka R; Sato N; Tanaka K; Takeshige T; Iwata H; Klostergaard J; Utsumi T
    J Biochem; 1999 Aug; 126(2):413-20. PubMed ID: 10423538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane topogenesis of a type I signal-anchor protein, mouse synaptotagmin II, on the endoplasmic reticulum.
    Kida Y; Sakaguchi M; Fukuda M; Mikoshiba K; Mihara K
    J Cell Biol; 2000 Aug; 150(4):719-30. PubMed ID: 10952998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sec62 protein mediates membrane insertion and orientation of moderately hydrophobic signal anchor proteins in the endoplasmic reticulum (ER).
    Reithinger JH; Kim JE; Kim H
    J Biol Chem; 2013 Jun; 288(25):18058-67. PubMed ID: 23632075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive charges of translocating polypeptide chain retrieve an upstream marginal hydrophobic segment from the endoplasmic reticulum lumen to the translocon.
    Fujita H; Kida Y; Hagiwara M; Morimoto F; Sakaguchi M
    Mol Biol Cell; 2010 Jun; 21(12):2045-56. PubMed ID: 20427573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly.
    Lu Y; Xiong X; Helm A; Kimani K; Bragin A; Skach WR
    J Biol Chem; 1998 Jan; 273(1):568-76. PubMed ID: 9417117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenesis and transmembrane topology of the CHIP28 water channel at the endoplasmic reticulum.
    Skach WR; Shi LB; Calayag MC; Frigeri A; Lingappa VR; Verkman AS
    J Cell Biol; 1994 May; 125(4):803-15. PubMed ID: 7514605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Export of a misprocessed GPI-anchored protein from the endoplasmic reticulum in vitro in an ATP- and cytosol-dependent manner.
    Ali BR; Claxton S; Field MC
    FEBS Lett; 2000 Oct; 483(1):32-6. PubMed ID: 11033351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of positive charges following signal-anchor sequences during translocation of the N-terminal domain.
    Kida Y; Morimoto F; Mihara K; Sakaguchi M
    J Biol Chem; 2006 Jan; 281(2):1152-8. PubMed ID: 16291756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endoplasmic reticulum (ER) translocon can differentiate between hydrophobic sequences allowing signals for glycosylphosphatidylinositol anchor addition to be fully translocated into the ER lumen.
    Dalley JA; Bulleid NJ
    J Biol Chem; 2003 Dec; 278(51):51749-57. PubMed ID: 14530277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and in vitro targeting of a sunflower oleosin.
    Thoyts PJ; Millichip MI; Stobart AK; Griffiths WT; Shewry PR; Napier JA
    Plant Mol Biol; 1995 Oct; 29(2):403-10. PubMed ID: 7579191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type II transmembrane domain hydrophobicity dictates the cotranslational dependence for inversion.
    Dou D; da Silva DV; Nordholm J; Wang H; Daniels R
    Mol Biol Cell; 2014 Nov; 25(21):3363-74. PubMed ID: 25165139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum.
    Deshaies RJ; Schekman R
    J Cell Biol; 1989 Dec; 109(6 Pt 1):2653-64. PubMed ID: 2687286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.