These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11673675)

  • 21. Layer thickness and curvature effects on otoconial membrane deformation in the utricle of the red-ear slider turtle: static and modal analysis.
    Davis JL; Xue J; Peterson EH; Grant JW
    J Vestib Res; 2007; 17(4):145-62. PubMed ID: 18525141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Piezoelectric effects in otolith structure-function relationship.
    Kondrachuk AV
    J Gravit Physiol; 1995; 2(1):P102-3. PubMed ID: 11538882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph.
    Borelli G; Mayer-Gostan N; Merle PL; De Pontual H; Boeuf G; Allemand D; Payan P
    Calcif Tissue Int; 2003 Jun; 72(6):717-25. PubMed ID: 14563001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images.
    Li H; Wang Z
    Comput Med Imaging Graph; 2006; 30(6-7):363-70. PubMed ID: 17074465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of Young's modulus and Poisson's ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect.
    Choi AP; Zheng YP
    Med Biol Eng Comput; 2005 Mar; 43(2):258-64. PubMed ID: 15865137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial orientation in bone samples and Young's modulus.
    Geraets WG; van Ruijven LJ; Verheij JG; van der Stelt PF; van Eijden TM
    J Biomech; 2008 Jul; 41(10):2206-10. PubMed ID: 18539283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear versus micro-shear bond strength test: a finite element stress analysis.
    Placido E; Meira JB; Lima RG; Muench A; de Souza RM; Ballester RY
    Dent Mater; 2007 Sep; 23(9):1086-92. PubMed ID: 17123595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the relation between head orientations and otolith responses in humans.
    Jaeger R; Takagi A; Haslwanter T
    Hear Res; 2002 Nov; 173(1-2):29-42. PubMed ID: 12372633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils.
    Barkaoui A; Hambli R
    J Appl Biomater Biomech; 2011; 9(3):199-205. PubMed ID: 22139755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement and finite element modeling of the force balance in the vertical section of adhering vascular endothelial cells.
    Deguchi S; Fukamachi H; Hashimoto K; Iio K; Tsujioka K
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):173-85. PubMed ID: 19627821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ovoid geometry of the Pacinian corpuscle is not the determining factor for mechanical excitation.
    Güçlü B; Schepis EA; Yelke S; Yucesoy CA; Bolanowski SJ
    Somatosens Mot Res; 2006; 23(3-4):119-26. PubMed ID: 17178547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A finite-element approach for Young's modulus reconstruction.
    Zhu Y; Hall TJ; Jiang J
    IEEE Trans Med Imaging; 2003 Jul; 22(7):890-901. PubMed ID: 12906243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Otolith responses to dynamical stimuli: results of a numerical investigation.
    Jaeger R; Haslwanter T
    Biol Cybern; 2004 Mar; 90(3):165-75. PubMed ID: 15052480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Deformation of brain and stress distribution caused by putaminal hemorrhage--numerical computer simulation by finite element method].
    Takizawa H; Sugiura K; Baba M; Kudou C; Endo S; Nakabayashi M; Fukuya R
    No To Shinkei; 1991 Nov; 43(11):1035-9. PubMed ID: 1799508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties.
    Ranga A; Mongrain R; Mendes Galaz R; Biadillah Y; Cartier R
    J Med Eng Technol; 2004; 28(3):95-103; discussion 104. PubMed ID: 15204613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Models of otolithic membrane-hair cell bundle interaction.
    Kondrachuk AV
    Hear Res; 2002 Apr; 166(1-2):96-112. PubMed ID: 12062762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.