These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 1167426)

  • 1. Growth, behavior, and brain catecholamines in lead-exposed neonatal rats: a reappraisal.
    Golter M; Michaelson IA
    Science; 1975 Jan; 187(4174):359-61. PubMed ID: 1167426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain.
    Rastogi RB; Singhal RL
    J Pharmacol Exp Ther; 1976 Sep; 198(3):609-18. PubMed ID: 978462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of neonatal 6-hydroxydopamine treatment on catecholamine levels and behavior during development and adulthood.
    Fobes JL; Olds ME
    Psychopharmacology (Berl); 1981; 73(1):27-30. PubMed ID: 6785785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperactivity and brain catecholamines in lead-exposed developing rats.
    Sauerhoff MW; Michaelson IA
    Science; 1973 Dec; 182(4116):1022-4. PubMed ID: 4795926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responsiveness to d-amphetamine in lead-exposed rats as measured by steady state levels of catecholamines and locomotor activity.
    Rafales LS; Greenland RD; Zenick H; Goldsmith M; Michaelson IA
    Neurobehav Toxicol Teratol; 1981; 3(3):363-7. PubMed ID: 7290291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotoxicity of manganese chloride in neonatal and adult CD rats following subchronic (21-day) high-dose oral exposure.
    Dorman DC; Struve MF; Vitarella D; Byerly FL; Goetz J; Miller R
    J Appl Toxicol; 2000; 20(3):179-87. PubMed ID: 10797470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium suppresses elevated behavioural activity and brain catecholamines in developing hyperthyroid rats.
    Rastogi RB; Singhal RL
    Can J Physiol Pharmacol; 1977 Jun; 55(3):490-5. PubMed ID: 18270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Significance of catecholamines for the manifestation of morphine withdrawal in the rat].
    Bläsig J; Papeschi R; Herz A
    Arzneimittelforschung; 1974 Jul; 24(7):1015-6. PubMed ID: 4408108
    [No Abstract]   [Full Text] [Related]  

  • 9. Learning impairment in rats after 6-hydroxydopamine-induced depletion of brain catecholamines.
    Mason ST; Iverson SD
    Nature; 1974 Apr; 248(5450):697-8. PubMed ID: 4151498
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of chronic lead exposure on release of endogenous catecholamines: a preliminary communication.
    Kant GJ; Lenox RH; Meyerhoff JL; Kenion CC; Annau Z
    Neurotoxicology; 1984; 5(3):227-34. PubMed ID: 6542977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioural and neurochemical consequences of neonatal exposure to lead in rats.
    Dubas TC; Hrdina PD
    J Environ Pathol Toxicol; 1978; 2(2):471-84. PubMed ID: 739226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine release and direct dopamine receptor activation in the central nervous system by D-145, an amantadine derivative.
    Svensson TH
    Eur J Pharmacol; 1973 Sep; 23(3):232-8. PubMed ID: 4746740
    [No Abstract]   [Full Text] [Related]  

  • 13. Animal models of human disease: severe and mild lead encephalopathy in the neonatal rat.
    Michaelson IA; Sauerhoff MW
    Environ Health Perspect; 1974 May; 7():201-25. PubMed ID: 4831141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of phencyclidine on the accumulation of 14 C-catecholamines formed from 14 C-tyrosine.
    Hitzemann RJ; Loh HH; Domino EF
    Arch Int Pharmacodyn Ther; 1973 Apr; 202(2):252-8. PubMed ID: 4694363
    [No Abstract]   [Full Text] [Related]  

  • 15. Neonatal lead exposure in the rat: decreased learning as a function of age and blood lead concentrations.
    Brown DR
    Toxicol Appl Pharmacol; 1975 Jun; 32(3):628-37. PubMed ID: 1154418
    [No Abstract]   [Full Text] [Related]  

  • 16. Behavior and brain contents of catecholamines in mice during chronic administration of methyldopa.
    Dominic JA; Moore KE
    Neuropharmacology; 1971 Sep; 10(5):565-70. PubMed ID: 4399541
    [No Abstract]   [Full Text] [Related]  

  • 17. [Differential depletion of storage sites for noradrenalin, dopamine and serotonin by oxypertin].
    Hassler R; Bak IJ; Kim JS
    Nervenarzt; 1970 Mar; 41(3):105-18. PubMed ID: 5447883
    [No Abstract]   [Full Text] [Related]  

  • 18. Exercise and rat brain catecholamines.
    Brown BS; Van Huss W
    J Appl Physiol; 1973 May; 34(5):664-9. PubMed ID: 4703743
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative studies of intracerebroventricularly administered cysteamine and pantethine in different behavioral tests and on brain catecholamines in rats.
    Vécsei L; Alling C; Widerlöv E
    Arch Int Pharmacodyn Ther; 1990; 305():140-51. PubMed ID: 2241425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some effects of prenatal exposure to d-amphetamine sulfate and phenobarbital on developmental neurochemistry and on behavior.
    Zemp JW; Middaugh LD
    Addict Dis; 1975; 2(1-2):307-31. PubMed ID: 1163369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.