These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1167463)

  • 1. Approach for an equation of state for adsorbed protein surfaces.
    Joos P
    Biochim Biophys Acta; 1975 Jan; 375(1):1-9. PubMed ID: 1167463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity of a protein monolayer from anisotropic surface pressure measurements.
    Cicuta P; Terentjev EM
    Eur Phys J E Soft Matter; 2005 Feb; 16(2):147-58. PubMed ID: 15729506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state.
    Wierenga PA; Egmond MR; Voragen AG; de Jongh HH
    J Colloid Interface Sci; 2006 Jul; 299(2):850-7. PubMed ID: 16600281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformational change in bovine beta-lactoglobulin at low pH.
    Mills OE; Creamer LK
    Biochim Biophys Acta; 1975 Feb; 379(2):618-26. PubMed ID: 235319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational state and charge determine the interfacial stabilization process of beta-lactoglobulin at preoccupied interfaces.
    Schestkowa H; Wollborn T; Westphal A; Maria Wagemans A; Fritsching U; Drusch S
    J Colloid Interface Sci; 2019 Feb; 536():300-309. PubMed ID: 30380430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants.
    Rippner Blomqvist B; Ridout MJ; Mackie AR; Wärnheim T; Claesson PM; Wilde P
    Langmuir; 2004 Nov; 20(23):10150-8. PubMed ID: 15518507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of globule unfolding on dilational viscoelasticity of beta-lactoglobulin adsorption layers.
    Noskov BA; Grigoriev DO; Latnikova AV; Lin SY; Loglio G; Miller R
    J Phys Chem B; 2009 Oct; 113(40):13398-404. PubMed ID: 19754088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of mixed beta-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study.
    Ganzevles RA; Fokkink R; van Vliet T; Cohen Stuart MA; de Jongh HH
    J Colloid Interface Sci; 2008 Jan; 317(1):137-47. PubMed ID: 17945249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulation of β-Lactoglobulin at Different Oil/Water Interfaces.
    Zare D; Allison JR; McGrath KM
    Biomacromolecules; 2016 May; 17(5):1572-81. PubMed ID: 27075297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited conformational change of beta-lactoglobulin when adsorbed at the air-water interface.
    Meinders MB; De Jongh HH
    Biopolymers; 2002; 67(4-5):319-22. PubMed ID: 12012457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in structure and hydrophobic surface properties of beta-lactoglobulin determined by partition in aqueous two-phase polymeric systems.
    Axelsson CG
    Biochim Biophys Acta; 1978 Mar; 533(1):34-42. PubMed ID: 25088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of secondary and tertiary conformational changes of beta-lactoglobulin adsorbed on silica nanoparticle surfaces.
    Wu X; Narsimhan G
    Langmuir; 2008 May; 24(9):4989-98. PubMed ID: 18366223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of the isothermal interaction of beta-lactoglobulin with guanidinium chloride and urea.
    Lapanje S; Lunder M; Vlachy V; Skerjanc J
    Biochim Biophys Acta; 1977 Apr; 491(2):482-90. PubMed ID: 870064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial properties of mixed beta-lactoglobulin-SDS layers at the water/air and water/oil interface.
    Pradines V; Krägel J; Fainerman VB; Miller R
    J Phys Chem B; 2009 Jan; 113(3):745-51. PubMed ID: 19113874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological changes in adsorbed protein films at the air-water interface subjected to large area variations, as observed by brewster angle microscopy.
    Xu R; Dickinson E; Murray BS
    Langmuir; 2007 Apr; 23(9):5005-13. PubMed ID: 17385900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoglycerides and beta-lactoglobulin adsorbed films at the air-water interface. structure, microscopic imaging, and shear characteristics.
    Fernández MC; Sánchez CC; Rodríguez Niño MR; Rodríguez Patino JM
    Langmuir; 2007 Jun; 23(13):7178-88. PubMed ID: 17511488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of proteins at the aqueous solution/alkane interface: Co-adsorption of protein and alkane.
    Miller R; Aksenenko EV; Zinkovych II; Fainerman VB
    Adv Colloid Interface Sci; 2015 Aug; 222():509-16. PubMed ID: 25813359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and structural change of beta-lactoglobulin at the diacylglycerol-water interface.
    Sakuno MM; Matsumoto S; Kawai S; Taihei K; Matsumura Y
    Langmuir; 2008 Oct; 24(20):11483-8. PubMed ID: 18803411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.