These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11674838)

  • 1. A simple method for electron energy constancy measurement.
    King RP; Anderson RS
    J Appl Clin Med Phys; 2001; 2(1):51-3. PubMed ID: 11674838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constancy checks of well-type ionization chambers with external-beam radiation units.
    Hackett SL; Davis B; Nixon A; Wyatt R
    J Appl Clin Med Phys; 2015 Nov; 16(6):508-514. PubMed ID: 26699571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using ion chambers with wedge-shaped absorbers for electron energy measurements.
    Johnsen SW
    Med Phys; 1986; 13(2):257-8. PubMed ID: 3702824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quality assurance for intraoperative electron radiotherapy clinical trials: ionization chamber and mailable thermoluminescent dosimeter results.
    Hazle JD; Chu JC; Kennedy P
    Int J Radiat Oncol Biol Phys; 1992; 24(3):559-63. PubMed ID: 1399744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scintillating fiber beam-energy monitor for electron beam therapy.
    Aoyama T; Maekoshi H; Tsuzaka M; Koyama S
    Med Phys; 1995 Dec; 22(12):2101-2. PubMed ID: 8746717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method of producing depth ionization data for electron energy constancy check.
    Islam MK; Rashid H; Gaballa H; Ting J; Rosenow UF
    Med Phys; 1993; 20(1):187-91. PubMed ID: 8455498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron energy constancy check using a five-chamber detector array.
    Ho AK; deSouza CN; Sibata CH; Shin KH
    Med Dosim; 1994; 19(4):259-60. PubMed ID: 7893360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tests of an electron monitor for routine quality control measurements of electron energies.
    Ramsay EB; Reinstein LE; Meek AG
    Med Phys; 1991; 18(6):1247-50. PubMed ID: 1753912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration.
    Thwaites DI; DuSautoy AR; Jordan T; McEwen MR; Nisbet A; Nahum AE; Pitchford WG;
    Phys Med Biol; 2003 Sep; 48(18):2929-70. PubMed ID: 14529204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified TRS398 dosimetry protocol for dose determination in high-energy electrons beams.
    Behin-Ain S; Lanzon P
    Phys Med Biol; 2006 May; 51(9):2205-9. PubMed ID: 16625036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams.
    Muir BR; McEwen MR; Rogers DW
    Phys Med Biol; 2014 Oct; 59(19):5953-69. PubMed ID: 25211012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron energy constancy verification using a double-wedge phantom.
    Wells DM; Picco PJ; Ansbacher W
    J Appl Clin Med Phys; 2003; 4(3):204-8. PubMed ID: 12841790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy constancy checking for electron beams using a wedge-shaped solid phantom combined with a beam profile scanner.
    Rosenow UF; Islam MK; Gaballa H; Rashid H
    Med Phys; 1991; 18(1):19-25. PubMed ID: 2008171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the AAPM "Protocol for the determination of absorbed dose from high-energy photon and electron beams" with currently used protocols.
    Hunt MA; Malik S; Thomason C; Masterson ME
    Med Phys; 1984; 11(6):806-13. PubMed ID: 6439991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Argon/propane ionization-chamber dosimetry for mixed x-ray/neutron fields.
    Schulz RJ
    Med Phys; 1978; 5(6):525-31. PubMed ID: 104137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Fricke dosimeter at high energy photon and electron beams used in radiotherapy.
    Moussous O; Khoudri S; Benguerba M
    Australas Phys Eng Sci Med; 2011 Dec; 34(4):523-8. PubMed ID: 21850550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of electron-beam energy monitor for quality assurance of the electron-beam energy from radiotherapy accelerators.
    Chida K; Saito H; Takai Y; Zuguchi M; Mitsuya M; Sakakida H; Kohzuki M; Yamada S
    Tohoku J Exp Med; 2002 Nov; 198(3):197-201. PubMed ID: 12597247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quality audit of megavoltage radiotherapy units: intercomparison of dose at a reference point using a mailed TL-dosimetry system.
    Davis B; Faessler P
    Radiother Oncol; 1993 Jul; 28(1):79-81. PubMed ID: 8234874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams.
    Huq MS; Andreo P; Song H
    Phys Med Biol; 2001 Nov; 46(11):2985-3006. PubMed ID: 11720359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse.
    Laitano RF; Guerra AS; Pimpinella M; Caporali C; Petrucci A
    Phys Med Biol; 2006 Dec; 51(24):6419-36. PubMed ID: 17148826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.