These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 11675027)
1. Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Rodriguez-Saona LE; Fry FS; McLaughlin MA; Calvey EM Carbohydr Res; 2001 Nov; 336(1):63-74. PubMed ID: 11675027 [TBL] [Abstract][Full Text] [Related]
2. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy. Tewari JC; Dixit V; Cho BK; Malik KA Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1119-27. PubMed ID: 18424176 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. Liu Y; Ying Y; Yu H; Fu X J Agric Food Chem; 2006 Apr; 54(8):2810-5. PubMed ID: 16608193 [TBL] [Abstract][Full Text] [Related]
4. Application of FTIR spectroscopy for the quantification of sugars in mango juice as a function of ripening. Duarte IF; Barros A; Delgadillo I; Almeida C; Gil AM J Agric Food Chem; 2002 May; 50(11):3104-11. PubMed ID: 12009970 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous monitoring of organic acids and sugars in fresh and processed apple juice by Fourier transform infrared-attenuated total reflection spectroscopy. Irudayaraj J; Tewari J Appl Spectrosc; 2003 Dec; 57(12):1599-604. PubMed ID: 14686782 [TBL] [Abstract][Full Text] [Related]
6. Rapid determination of sugar level in snack products using infrared spectroscopy. Wang T; Rodriguez-Saona LE J Food Sci; 2012 Aug; 77(8):C874-9. PubMed ID: 22860578 [TBL] [Abstract][Full Text] [Related]
7. Hyphenation of ion exchange high-performance liquid chromatography with Fourier transform infrared detection for the determination of sugars in nonalcoholic beverages. Vonach R; Lendl B; Kellner R Anal Chem; 1997 Oct; 69(20):4286-90. PubMed ID: 9337597 [TBL] [Abstract][Full Text] [Related]
8. Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics. Kelly JF; Downey G J Agric Food Chem; 2005 May; 53(9):3281-6. PubMed ID: 15853360 [TBL] [Abstract][Full Text] [Related]
9. Quantification of saccharides in multiple floral honeys using fourier transform infrared microattenuated total reflectance spectroscopy. Tewari J; Irudayaraj J J Agric Food Chem; 2004 Jun; 52(11):3237-43. PubMed ID: 15161176 [TBL] [Abstract][Full Text] [Related]
10. A Combined Approach of Infrared Spectroscopy and Multivariate Analysis for the Simultaneous Determination of Sugars and Fructans in Strawberry Juices During Storage. Cassani L; Santos M; Gerbino E; Del Rosario Moreira M; Gómez-Zavaglia A J Food Sci; 2018 Mar; 83(3):631-638. PubMed ID: 29210453 [TBL] [Abstract][Full Text] [Related]
11. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Lohumi S; Lee S; Lee WH; Kim MS; Mo C; Bae H; Cho BK J Agric Food Chem; 2014 Sep; 62(38):9246-51. PubMed ID: 25188555 [TBL] [Abstract][Full Text] [Related]
12. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis. Wang J; Kliks MM; Jun S; Jackson M; Li QX J Food Sci; 2010 Mar; 75(2):C208-14. PubMed ID: 20492227 [TBL] [Abstract][Full Text] [Related]
13. 13C-IRIS: an improved method to detect the addition of low levels of C4-derived sugars to juices. Day MP; Correia P; Hammond DA J AOAC Int; 2001; 84(3):957-63. PubMed ID: 11417659 [TBL] [Abstract][Full Text] [Related]
14. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968 [TBL] [Abstract][Full Text] [Related]
15. Application of near-infrared spectroscopy for estimation of non-structural carbohydrates in foliar samples of Eucalyptus globulus Labilladière. Quentin AG; Rodemann T; Doutreleau MF; Moreau M; Davies NW; Millard P Tree Physiol; 2017 Jan; 37(1):131-141. PubMed ID: 28173560 [TBL] [Abstract][Full Text] [Related]
16. [Analysis of multi-component sugar aqueous solution in low-concentration by near-infrared spectrometry]. Hu B; Chen D; Su QD Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1049-52. PubMed ID: 16241052 [TBL] [Abstract][Full Text] [Related]
17. Non-destructive determination of strawberry fruit and juice quality parameters using ultraviolet, visible, and near-infrared spectroscopy. Włodarska K; Szulc J; Khmelinskii I; Sikorska E J Sci Food Agric; 2019 Oct; 99(13):5953-5961. PubMed ID: 31215031 [TBL] [Abstract][Full Text] [Related]
18. Measurement of sugar content in Fuji apples by FT-NIR spectroscopy. Liu YD; Ying YB J Zhejiang Univ Sci; 2004 Jun; 5(6):651-5. PubMed ID: 15101097 [TBL] [Abstract][Full Text] [Related]
19. Determining sucrose and glucose levels in dual-purpose sorghum stalks by Fourier transform near infrared (FT-NIR) spectroscopy. Chen SF; Danao MG; Singh V; Brown PJ J Sci Food Agric; 2014 Sep; 94(12):2569-76. PubMed ID: 24590962 [TBL] [Abstract][Full Text] [Related]
20. Detection of apple juice adulteration using near-infrared transflectance spectroscopy. León L; Kelly JD; Downey G Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]