BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 11675601)

  • 1. Variable subunit contact and cooperativity of hemoglobins.
    Shionyu M; Takahashi K; Gō M
    J Mol Evol; 2001; 53(4-5):416-29. PubMed ID: 11675601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary structure of Noetia ponderosa hemoglobins: functional correlates.
    Nagel RL; Shi Y; Le N; Nieves E; Tang X; Hirsch RE; Angeletti RH
    Blood Cells Mol Dis; 2000 Oct; 26(5):437-44. PubMed ID: 11112381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residue F4 plays a key role in modulating oxygen affinity and cooperativity in Scapharca dimeric hemoglobin.
    Knapp JE; Bonham MA; Gibson QH; Nichols JC; Royer WE
    Biochemistry; 2005 Nov; 44(44):14419-30. PubMed ID: 16262242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of Urechis caupo hemoglobin.
    Kolatkar PR; Hackert ML; Riggs AF
    J Mol Biol; 1994 Mar; 237(1):87-97. PubMed ID: 8133523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic evidence for a new ensemble of ligand-induced allosteric transitions in hemoglobin: the T-to-T(high) quaternary transitions.
    Kavanaugh JS; Rogers PH; Arnone A
    Biochemistry; 2005 Apr; 44(16):6101-21. PubMed ID: 15835899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of cooperativity in hemoglobins: what can invertebrate hemoglobins tell us?
    Kitto GB; Thomas PW; Hackert ML
    J Exp Zool; 1998 Sep-Oct 1; 282(1-2):120-6. PubMed ID: 9723169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the heterotropic and homotropic interactions of invertebrate giant hemoglobin.
    Numoto N; Nakagawa T; Kita A; Sasayama Y; Fukumori Y; Miki K
    Biochemistry; 2008 Oct; 47(43):11231-8. PubMed ID: 18834142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution crystallographic analysis of a co-operative dimeric hemoglobin.
    Royer WE
    J Mol Biol; 1994 Jan; 235(2):657-81. PubMed ID: 8289287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of Parasponia and Trema hemoglobins: differential heme coordination is linked to quaternary structure.
    Kakar S; Sturms R; Tiffany A; Nix JC; DiSpirito AA; Hargrove MS
    Biochemistry; 2011 May; 50(20):4273-80. PubMed ID: 21491905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional similarity and structural diversity of human and cartilaginous fish hemoglobins.
    Naoi Y; Chong KT; Yoshimatsu K; Miyazaki G; Tame JR; Park SY; Adachi S; Morimoto H
    J Mol Biol; 2001 Mar; 307(1):259-70. PubMed ID: 11243818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen equilibrium and EPR studies on alpha1beta1 hemoglobin dimer.
    Venkatesh B; Miyazaki G; Imai K; Morimoto H; Hori H
    J Biochem; 2004 Nov; 136(5):595-600. PubMed ID: 15632298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linked analysis of large cooperative, allosteric systems: the case of the giant HBL hemoglobins.
    Hellmann N; Weber RE; Decker H
    Methods Enzymol; 2008; 436():463-85. PubMed ID: 18237649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric distribution of cooperativity in the binding cascade of normal human hemoglobin. 1. Cooperative and noncooperative oxygen binding in Zn-substituted hemoglobin.
    Holt JM; Klinger AL; Yarian CS; Keelara V; Ackers GK
    Biochemistry; 2005 Sep; 44(36):11925-38. PubMed ID: 16142891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-linked structural transitions in crystals of a cooperative dimeric hemoglobin.
    Knapp JE; Royer WE
    Biochemistry; 2003 Apr; 42(16):4640-7. PubMed ID: 12705827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restricting the ligand-linked heme movement in Scapharca dimeric hemoglobin reveals tight coupling between distal and proximal contributions to cooperativity.
    Knapp JE; Gibson QH; Cushing L; Royer WE
    Biochemistry; 2001 Dec; 40(49):14795-805. PubMed ID: 11732898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational destabilization of the critical interface water cluster in Scapharca dimeric hemoglobin: structural basis for altered allosteric activity.
    Pardanani A; Gambacurta A; Ascoli F; Royer WE
    J Mol Biol; 1998 Dec; 284(3):729-39. PubMed ID: 9826511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding modes of L35 to alpha- and beta-semihemoglobins: structural insights into the inequivalence of alpha- and beta-subunits of hemoglobin.
    De Rosa MC; Carelli Alinovi C; Russo A; Giardina B
    Biochem Biophys Res Commun; 2007 Mar; 354(3):720-6. PubMed ID: 17254552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biophysical investigation of recombinant hemoglobins with aromatic B10 mutations in the distal heme pockets.
    Wiltrout ME; Giovannelli JL; Simplaceanu V; Lukin JA; Ho NT; Ho C
    Biochemistry; 2005 May; 44(19):7207-17. PubMed ID: 15882059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and thermodynamic aspects of cooperativity in the homodimeric hemoglobin from Scapharca inaequivalvis.
    Chiancone E; Boffi A
    Biophys Chem; 2000 Aug; 86(2-3):173-8. PubMed ID: 11026682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.