These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11676021)

  • 1. Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC7064 oligo-1,6-glucosidase.
    Watanabe K; Miyake K; Suzuki Y
    Biosci Biotechnol Biochem; 2001 Sep; 65(9):2058-64. PubMed ID: 11676021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization.
    Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y
    J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary structure of the oligo-1,6-glucosidase of Bacillus cereus ATCC7064 deduced from the nucleotide sequence of the cloned gene.
    Watanabe K; Kitamura K; Iha H; Suzuki Y
    Eur J Biochem; 1990 Sep; 192(3):609-20. PubMed ID: 2120057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule.
    Watanabe K; Masuda T; Ohashi H; Mihara H; Suzuki Y
    Eur J Biochem; 1994 Dec; 226(2):277-83. PubMed ID: 8001545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypeptide folding of Bacillus cereus ATCC7064 oligo-1,6-glucosidase revealed by 3.0 A resolution X-ray analysis.
    Kizaki H; Hata Y; Watanabe K; Katsube Y; Suzuki Y
    J Biochem; 1993 Jun; 113(6):646-9. PubMed ID: 8370659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues.
    Watanabe K; Kitamura K; Suzuki Y
    Appl Environ Microbiol; 1996 Jun; 62(6):2066-73. PubMed ID: 8787404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae.
    Yamamoto K; Miyake H; Kusunoki M; Osaki S
    J Biosci Bioeng; 2011 Dec; 112(6):545-50. PubMed ID: 21925939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assignment of Bacillus thermoamyloliquefaciens KP1071 alpha-glucosidase I to an exo-alpha-1,4-glucosidase, and its striking similarity to bacillary oligo-1,6-glucosidases in N-terminal sequence and in structural parameters calculated from the amino acid composition.
    Suzuki Y; Yonezawa K; Hattori M; Takii Y
    Eur J Biochem; 1992 Apr; 205(1):249-56. PubMed ID: 1555585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the molecular basis of the broad substrate specificity of alpha-glucosidase from Bacillus sp. SAM1606.
    Noguchi A; Yano M; Ohshima Y; Hemmi H; Inohara-Ochiai M; Okada M; Min KS; Nakayama T; Nishino T
    J Biochem; 2003 Oct; 134(4):543-50. PubMed ID: 14607981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase.
    Saburi W; Rachi-Otsuka H; Hondoh H; Okuyama M; Mori H; Kimura A
    FEBS Lett; 2015 Mar; 589(7):865-9. PubMed ID: 25728274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006.
    Watanabe K; Chishiro K; Kitamura K; Suzuki Y
    J Biol Chem; 1991 Dec; 266(36):24287-94. PubMed ID: 1761534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus thermoamyloliquefaciens KP1071 alpha-glucosidase II is a thermostable M(r) 540,000 homohexameric alpha-glucosidase with both exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities.
    Suzuki Y; Nobiki M; Matsuda M; Sawai T
    Eur J Biochem; 1997 Apr; 245(1):129-36. PubMed ID: 9128733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overproduction, purification and crystallization of Bacillus cereus oligo-1,6-glucosidase.
    Watanabe K; Kitamura K; Hata Y; Katsube Y; Suzuki Y
    FEBS Lett; 1991 Sep; 290(1-2):221-3. PubMed ID: 1915879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate recognition mechanism of alpha-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans.
    Hondoh H; Saburi W; Mori H; Okuyama M; Nakada T; Matsuura Y; Kimura A
    J Mol Biol; 2008 May; 378(4):913-22. PubMed ID: 18395742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altering substrate specificity of Bacillus sp. SAM1606 alpha-glucosidase by comparative site-specific mutagenesis.
    Inohara-Ochiai M; Nakayama T; Goto R; Nakao M; Ueda T; Shibano Y
    J Biol Chem; 1997 Jan; 272(3):1601-7. PubMed ID: 8999834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of Bacillus flavocaldarius KP1228.
    Kashiwabara S; Matsuki Y; Kishimoto T; Suzuki Y
    Biosci Biotechnol Biochem; 1998 Jun; 62(6):1093-102. PubMed ID: 9692189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic mechanism of beta-amylase from Bacillus cereus var. mycoides: chemical rescue of hydrolytic activity for a catalytic site mutant (Glu367-->Ala) by azide.
    Miyake H; Otsuka C; Nishimura S; Nitta Y
    J Biochem; 2002 Apr; 131(4):587-91. PubMed ID: 11926997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the roles of active site residues in phosphatidylinositol-specific phospholipase C from Bacillus cereus by site-directed mutagenesis.
    Gässler CS; Ryan M; Liu T; Griffith OH; Heinz DW
    Biochemistry; 1997 Oct; 36(42):12802-13. PubMed ID: 9335537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.
    Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H
    J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.