BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11676441)

  • 1. Silica deposition on the leaves of Mir- and Earth-grown Super Dwarf wheat.
    Campbell WF; Bubenheim DL; Salisbury FB; Bingham GE; McManus WR; Biesinger HD; Strickland DT; Levinskikh M; Sytchev VN; Podolsky I; Ivanova I; Chernova L; Jahns G
    Life Support Biosph Sci; 2000; 7(3):263-72. PubMed ID: 11676441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing super-dwarf wheat in Svet on Mir.
    Salisbury FB; Bingham GE; Campbell WF; Carman JG; Bubenheim DL; Yendler B; Jahns G
    Life Support Biosph Sci; 1995; 2(1):31-9. PubMed ID: 11538572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From fresh vegetables to the harvest of wheat plants grown in the "SVET" space greenhouse onboard the MIR orbital station.
    Ivanova T; Kostov P; Sapunova S; Dandolov I; Sytchev V; Podolski I; Levinskikh M; Meleshko G; Bingham G; Salisbury F
    J Gravit Physiol; 1997 Jul; 4(2):P71-2. PubMed ID: 11540703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative floral development of Mir-grown and ethylene-treated, earth-grown Super Dwarf wheat.
    Campbell WF; Salisbury FB; Bugbee B; Klassen S; Naegle E; Strickland DT; Bingham GE; Levinskikh M; Iljina GM; Veselova TD; Sytchev VN; Podolsky I; McManus WR; Bubenheim DL; Stieber J; Jahns G
    J Plant Physiol; 2001 Aug; 158(8):1051-60. PubMed ID: 12033229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growing Super-Dwarf wheat in Space Station Mir.
    Salisbury FB
    Life Support Biosph Sci; 1997; 4(3-4):155-66. PubMed ID: 11542291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheat production in the controlled environments of space.
    Bugbee B; Salisbury FB
    Utah Sci; 1985; 46(4):145-51. PubMed ID: 11540895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat.
    Carman JG; Hole P; Salisbury FB; Bingham GE
    Life Sci Space Res (Amst); 2015 Jul; 6():59-68. PubMed ID: 26256629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of plant growth chambers for the experiments under microgravity conditions--development of measurement system of plant water uptake].
    Saito T; Kobayashi Y; Shiga T; Arakawa Y; Takai M; Shimanuki M; Tani A; Goto E; Kitaya Y; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):226-7. PubMed ID: 12533009
    [No Abstract]   [Full Text] [Related]  

  • 9. [Development of plant growth chambers for the experiments under microgravity conditions (7) -measurements of leaf temperature and net photosynthetic rates of leaves in a parabolic airplane flight experiment].
    Kitaya Y; Kawai M; Tsuruyama J; Takahashi H; Goto E; Tani A; Saito T; Kiyota M
    Biol Sci Space; 1999 Sep; 13(3):230-1. PubMed ID: 12533010
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.
    Koch K; Barthlott W; Koch S; Hommes A; Wandelt K; Mamdouh W; De-Feyter S; Broekmann P
    Planta; 2006 Jan; 223(2):258-70. PubMed ID: 16133211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics of super dwarf wheat metabolism in microgravity].
    Nefedova EL; Livanskaia OG; Levinskikh MA; Sychev VN; Carmen D; Bebenheim D
    Aviakosm Ekolog Med; 2000; 34(6):30-5. PubMed ID: 11253720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of weightlessness on photosynthesizing cells structure of plant.
    Nedukha OM
    J Gravit Physiol; 1997 Jul; 4(2):P79-80. PubMed ID: 11540707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weightlessness experiments on Biosatellite II.
    Edwards BF
    Life Sci Space Res; 1969; 7():84-92. PubMed ID: 11949691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat.
    Stutte GW; Monje O; Hatfield RD; Paul AL; Ferl RJ; Simone CG
    Planta; 2006 Oct; 224(5):1038-49. PubMed ID: 16708225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced abnormality in Mir- and Earth grown Super Dwarf wheat.
    Bubenheim DL; Stieber J; Campbell WF; Salisbury FB; Levinski M; Sytchev V; Podolsky I; Chernova L; Pdolsky I
    Adv Space Res; 2003; 31(1):229-34. PubMed ID: 12580182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of plant waxes as templates for micro- and nanopatterning of surfaces.
    Koch K; Dommisse A; Barthlott W; Gorb SN
    Acta Biomater; 2007 Nov; 3(6):905-9. PubMed ID: 17656166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the spaceflight effects on growth and development of Super Dwarf wheat grown on the Space Station Mir.
    Levinskikh MA; Sychev VN; Derendyaeva TA; Signalova OB; Salisbury FB; Campbell WF; Bingham GE; Bubenheim DL; Jahns G
    J Plant Physiol; 2000 Apr; 156(4):522-9. PubMed ID: 11543345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant growth during the Greenhouse II experiment on the Mir orbital station.
    Salisbury FB; Campbell WF; Carman JG; Bingham GE; Bubenheim DL; Yendler B; Sytchev V; Levinskikh MA; Ivanova I; Chernova L; Podolsky I
    Adv Space Res; 2003; 31(1):221-7. PubMed ID: 12580179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of water and nutrients using a porous tube: a method for growing plants in space.
    Dreschel TW; Sager JC
    HortScience; 1989 Dec; 24(6):944-7. PubMed ID: 11540906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of silicon in preventing appressorial penetration by the rice blast fungus.
    Hayasaka T; Fujii H; Ishiguro K
    Phytopathology; 2008 Sep; 98(9):1038-44. PubMed ID: 18943742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.