These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11676444)

  • 1. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana.
    Ramonell KM; Kuang A; Porterfield DM; Crispi ML; Xiao Y; McClure G; Musgrave ME
    Plant Cell Environ; 2001 Apr; 24(4):419-28. PubMed ID: 11676444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of seed development in Arabidopsis thaliana by atmospheric oxygen.
    Kuang A; Crispi M; Musgrave ME
    Plant Cell Environ; 1998 Jan; 21(1):71-8. PubMed ID: 11542767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic and adaptive responses of plant respiration to changes in atmospheric CO(2) concentration.
    Gonzàlez-Meler MA; Blanc-Betes E; Flower CE; Ward JK; Gomez-Casanovas N
    Physiol Plant; 2009 Dec; 137(4):473-84. PubMed ID: 19671094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
    Markelz RJ; Lai LX; Vosseler LN; Leakey AD
    Plant Cell Environ; 2014 Apr; 37(4):886-98. PubMed ID: 24112047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana.
    Nakaya M; Tsukaya H; Murakami N; Kato M
    Plant Cell Physiol; 2002 Feb; 43(2):239-44. PubMed ID: 11867704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen control of ethylene biosynthesis during seed development in Arabidopsis thaliana (L.) Heynh.
    Ramonell KM; McClure G; Musgrave ME
    Plant Cell Environ; 2002 Jun; 25(6):793-801. PubMed ID: 12092614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoassimilation, assimilate translocation and plasmodesmal biogenesis in the source leaves of Arabidopsis thaliana grown under an increased atmospheric CO2 concentration.
    Duan Z; Homma A; Kobayashi M; Nagata N; Kaneko Y; Fujiki Y; Nishida I
    Plant Cell Physiol; 2014 Feb; 55(2):358-69. PubMed ID: 24406629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthesis and fluorescence quenching, and the mRNA levels of plastidic glutamine synthetase or of mitochondrial serine hydroxymethyltransferase (SHMT) in the leaves of the wild-type and of the SHMT-deficient stm mutant of Arabidopsis thaliana in relation to the rate of photorespiration.
    Beckmann K; Dzuibany C; Biehler K; Fock H; Hell R; Migge A; Becker TW
    Planta; 1997; 202(3):379-86. PubMed ID: 9232907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in Arabidopsis starch mutants. Significance of starch and hexose.
    Sun J; Gibson KM; Kiirats O; Okita TW; Edwards GE
    Plant Physiol; 2002 Nov; 130(3):1573-83. PubMed ID: 12428022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field.
    Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR
    Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana.
    Teng N; Wang J; Chen T; Wu X; Wang Y; Lin J
    New Phytol; 2006; 172(1):92-103. PubMed ID: 16945092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of carbon partitioning, photosynthetic capacity, and O2 sensitivity in Arabidopsis plants with low ADP-glucose pyrophosphorylase activity.
    Sun J; Okita TW; Edwards GE
    Plant Physiol; 1999 Jan; 119(1):267-76. PubMed ID: 9880369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2: an experimentally based model.
    Rasse DP; Tocquin P
    New Phytol; 2006; 172(3):500-13. PubMed ID: 17083680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concerted Changes in the Phosphoproteome and Metabolome Under Different CO2/O2 Gaseous Conditions in Arabidopsis Rosettes.
    Abadie C; Mainguet S; Davanture M; Hodges M; Zivy M; Tcherkez G
    Plant Cell Physiol; 2016 Jul; 57(7):1544-1556. PubMed ID: 27903807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic signalling of environmental cues in Arabidopsis leaves.
    Coupe SA; Palmer BG; Lake JA; Overy SA; Oxborough K; Woodward FI; Gray JE; Quick WP
    J Exp Bot; 2006; 57(2):329-41. PubMed ID: 16330523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2].
    Markelz RJ; Vosseller LN; Leakey AD
    Plant Cell Environ; 2014 Nov; 37(11):2542-52. PubMed ID: 24635671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase of photosynthesis and starch in potato under elevated CO2 is dependent on leaf age.
    Katny MA; Hoffmann-Thoma G; Schrier AA; Fangmeier A; Jäger HJ; van Bel AJ
    J Plant Physiol; 2005 Apr; 162(4):429-38. PubMed ID: 15900885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf respiration in darkness and in the light under pre-industrial, current and elevated atmospheric CO₂ concentrations.
    Ayub G; Zaragoza-Castells J; Griffin KL; Atkin OK
    Plant Sci; 2014 Sep; 226():120-30. PubMed ID: 25113457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Arabidopsis leaf ultrastructure, chlorophyll and carbohydrate content during spaceflight depend on ventilation.
    Musgrave ME; Kuang A; Brown CS; Matthews SW
    Ann Bot; 1998 Apr; 81(4):503-12. PubMed ID: 11541287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which plant trait explains the variations in relative growth rate and its response to elevated carbon dioxide concentration among Arabidopsis thaliana ecotypes derived from a variety of habitats?
    Oguchi R; Ozaki H; Hanada K; Hikosaka K
    Oecologia; 2016 Mar; 180(3):865-76. PubMed ID: 26494563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.