BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1167671)

  • 21. The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart.
    Arnold G; Kosche F; Miessner E; Neitzert A; Lochner W
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1968; 299(4):339-56. PubMed ID: 5247223
    [No Abstract]   [Full Text] [Related]  

  • 22. Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs.
    Bardenheuer H; Schrader J
    Circ Res; 1983 Mar; 52(3):263-71. PubMed ID: 6825219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myocardial metabolism and coronary flow: effects of endotoxemia.
    Rumsey WL; Kilpatrick L; Wilson DF; Erecinska M
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1295-304. PubMed ID: 3202193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia. Role of myocardial oxygen supply-demand imbalance.
    Serizawa T; Vogel WM; Apstein CS; Grossman W
    J Clin Invest; 1981 Jul; 68(1):91-102. PubMed ID: 7251868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.
    Portman MA; Standaert TA; Ning XH
    J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time dependent partial loss of the effects of isoproterenol on function and energy metabolism of isolated rat hearts.
    Giesen J; Sondermann M; Juengling E; Kammermeier H
    Basic Res Cardiol; 1980; 75(4):515-25. PubMed ID: 7436995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy.
    Massie BM; Schaefer S; Garcia J; McKirnan MD; Schwartz GG; Wisneski JA; Weiner MW; White FC
    Circulation; 1995 Mar; 91(6):1814-23. PubMed ID: 7882492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of catecholamines, exercise, and nitroglycerin on the normal and ischemic myocardium in conscious dogs.
    Vatner SF; McRitchie RJ; Maroko PR; Patrick TA; Braunwald E
    J Clin Invest; 1974 Sep; 54(3):563-75. PubMed ID: 4152859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of hyperosmotic perfusion on rate of oxygen consumption of isolated guinea pig and rat hearts during cardioplegia.
    Hanley PJ; Cooper PJ; Loiselle DS
    Cardiovasc Res; 1994 Apr; 28(4):485-93. PubMed ID: 8181035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endotoxin-induced contractile dysfunction in guinea pig hearts is not mediated by nitric oxide.
    Decking UK; Flesche CW; Gödecke A; Schrader J
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2460-5. PubMed ID: 7541961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increase in the coronary vascular resistance by indomethacin in the isolated guinea pig heart preparation in the absence of changes in mechanical performance and oxygen consumption.
    Schrör K; Krebs R; Nookhwun C
    Eur J Pharmacol; 1976 Sep; 39(1):161-9. PubMed ID: 964300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Phosphate compounds in isolated, perfused hearts during pH variation due to changes in extracellular PCO2 and bicarbonate].
    Kammermeier H; Rudroff W; Krautzberger W; Gerlach E
    Pflugers Arch; 1969; 312(1):R10-1. PubMed ID: 5390157
    [No Abstract]   [Full Text] [Related]  

  • 33. The mechanism of coronary hyperemia induced by increased cardiac work.
    Müller-Ruchholtz ER; Neill WA
    Pflugers Arch; 1976 Jan; 361(2):197-9. PubMed ID: 943094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Physiology of the coronary circulation as a basis for evaluation of coronary dilators].
    Lochner W
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1969; 263(1):127-44. PubMed ID: 4979631
    [No Abstract]   [Full Text] [Related]  

  • 35. Intracoronary papaverine but not adenosine reduces regional ventricular function.
    Martin SE; Schmarkey LS; Oh DJ; Patterson RE
    Cardiovasc Res; 1993 Nov; 27(11):2028-36. PubMed ID: 8287414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of an intraventricular balloon upon the chemical composition of isolated perfused rabbit heart.
    Kako K; Ito Y
    Can J Physiol Pharmacol; 1967 Jan; 45(1):177-81. PubMed ID: 6030396
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of supranormal coronary blood flow on energy metabolism and systolic function of porcine left ventricle.
    Schwartz GG; Schaefer S; Trocha SD; Garcia J; Steinman S; Massie BM; Weiner MW
    Cardiovasc Res; 1992 Oct; 26(10):1001-6. PubMed ID: 1486583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure.
    Bünger R; Mallet RT; Hartman DA
    Eur J Biochem; 1989 Mar; 180(1):221-33. PubMed ID: 2707262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systemic and coronary hemodynamic effects of glucagon.
    Rowe GG
    Am J Cardiol; 1970 Jun; 25(6):670-4. PubMed ID: 5420906
    [No Abstract]   [Full Text] [Related]  

  • 40. Coronary flow rate and perfusion pressure as determinants of mechanical function and oxidative metabolism of isolated perfused rat heart.
    Opie LH
    J Physiol; 1965 Oct; 180(3):529-41. PubMed ID: 5846791
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.