BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11677053)

  • 1. Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo.
    Umbhauer M; Boucaut JC; Shi DL
    Mech Dev; 2001 Nov; 109(1):61-8. PubMed ID: 11677053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hes6 is required for MyoD induction during gastrulation.
    Murai K; Vernon AE; Philpott A; Jones P
    Dev Biol; 2007 Dec; 312(1):61-76. PubMed ID: 17950722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zygotic Wnt/beta-catenin signaling preferentially regulates the expression of Myf5 gene in the mesoderm of Xenopus.
    Shi DL; Bourdelas A; Umbhauer M; Boucaut JC
    Dev Biol; 2002 May; 245(1):124-35. PubMed ID: 11969260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes.
    Takeda M; Saito Y; Sekine R; Onitsuka I; Maeda R; Maéno M
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Jun; 126(2):157-68. PubMed ID: 10874163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RNA-binding protein Seb4/RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development.
    Li HY; Bourdelas A; Carron C; Shi DL
    Mech Dev; 2010; 127(5-6):281-91. PubMed ID: 20338237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of somitic expression of tenascin in Xenopus embryos by myogenic factors and Brachyury.
    Umbhauer M; Riou JF; Smith JC; Boucaut JC
    Dev Dyn; 1994 Aug; 200(4):269-77. PubMed ID: 7527682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis.
    Grimaldi A; Tettamanti G; Martin BL; Gaffield W; Pownall ME; Hughes SM
    Development; 2004 Jul; 131(14):3249-62. PubMed ID: 15201218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic role of XESR1 and XESR5 in mesoderm formation in Xenopus laevis.
    Kinoshita T; Haruta Y; Sakamoto C; Imaoka S
    Int J Dev Biol; 2011; 55(1):25-31. PubMed ID: 21425079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos.
    Hopwood ND; Pluck A; Gurdon JB
    Development; 1991 Feb; 111(2):551-60. PubMed ID: 1716555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm.
    Yang J; Mei W; Otto A; Xiao L; Tao Q; Geng X; Rupp RA; Ding X
    Mech Dev; 2002 Jul; 115(1-2):79-89. PubMed ID: 12049769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis.
    Fisher ME; Isaacs HV; Pownall ME
    Development; 2002 Mar; 129(6):1307-15. PubMed ID: 11880340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XTIF2, a Xenopus homologue of the human transcription intermediary factor, is required for a nuclear receptor pathway that also interacts with CBP to suppress Brachyury and XMyoD.
    de la Calle-Mustienes E; Gómez-Skarmeta JL
    Mech Dev; 2000 Mar; 91(1-2):119-29. PubMed ID: 10704837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds.
    Armes NA; Smith JC
    Development; 1997 Oct; 124(19):3797-804. PubMed ID: 9367435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VegT, eFGF and Xbra cause overall posteriorization while Xwnt8 causes eye-level restricted posteriorization in synergy with chordin in early Xenopus development.
    Fujii H; Sakai M; Nishimatsu S; Nohno T; Mochii M; Orii H; Watanabe K
    Dev Growth Differ; 2008 Mar; 50(3):169-80. PubMed ID: 18318733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis.
    Delfini MC; Hirsinger E; Pourquié O; Duprez D
    Development; 2000 Dec; 127(23):5213-24. PubMed ID: 11060246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of XMyoD protein in early Xenopus laevis embryos.
    Hopwood ND; Pluck A; Gurdon JB; Dilworth SM
    Development; 1992 Jan; 114(1):31-8. PubMed ID: 1315678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage.
    Ludolph DC; Neff AW; Mescher AL; Malacinski GM; Parker MA; Smith RC
    Dev Biol; 1994 Nov; 166(1):18-33. PubMed ID: 7525388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning.
    Davis RL; Turner DL
    Oncogene; 2001 Dec; 20(58):8342-57. PubMed ID: 11840327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins.
    Latinkić BV; Umbhauer M; Neal KA; Lerchner W; Smith JC; Cunliffe V
    Genes Dev; 1997 Dec; 11(23):3265-76. PubMed ID: 9389657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD.
    Kopan R; Nye JS; Weintraub H
    Development; 1994 Sep; 120(9):2385-96. PubMed ID: 7956819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.