These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 11677622)
1. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases. Jordan IK; Natale DA; Koonin EV; Galperin MY J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622 [TBL] [Abstract][Full Text] [Related]
2. The structure and function of heavy metal transport P1B-ATPases. Argüello JM; Eren E; González-Guerrero M Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055 [TBL] [Abstract][Full Text] [Related]
3. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Singleton C; Le Brun NE Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061 [TBL] [Abstract][Full Text] [Related]
4. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Andrés-Colás N; Sancenón V; Rodríguez-Navarro S; Mayo S; Thiele DJ; Ecker JR; Puig S; Peñarrubia L Plant J; 2006 Jan; 45(2):225-36. PubMed ID: 16367966 [TBL] [Abstract][Full Text] [Related]
5. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein. Rodriguez-Granillo A; Crespo A; Estrin DA; Wittung-Stafshede P J Phys Chem B; 2010 Mar; 114(10):3698-706. PubMed ID: 20166696 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674 [TBL] [Abstract][Full Text] [Related]
7. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527 [TBL] [Abstract][Full Text] [Related]
8. Conformational dynamics of metal-binding domains in Wilson disease protein: molecular insights into selective copper transfer. Rodriguez-Granillo A; Crespo A; Wittung-Stafshede P Biochemistry; 2009 Jun; 48(25):5849-63. PubMed ID: 19449859 [TBL] [Abstract][Full Text] [Related]
9. Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. Lübben M; Portmann R; Kock G; Stoll R; Young MM; Solioz M Biometals; 2009 Apr; 22(2):363-75. PubMed ID: 18979168 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. González-Guerrero M; Argüello JM Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453 [TBL] [Abstract][Full Text] [Related]
11. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications. Myari A; Hadjiliadis N; Fatemi N; Sarkar B J Inorg Biochem; 2004 Sep; 98(9):1483-94. PubMed ID: 15337600 [TBL] [Abstract][Full Text] [Related]
12. Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding. González-Guerrero M; Hong D; Argüello JM J Biol Chem; 2009 Jul; 284(31):20804-11. PubMed ID: 19525226 [TBL] [Abstract][Full Text] [Related]
13. Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus. Saitoh Y; Izumitsu K; Tanaka C Mycol Res; 2009; 113(Pt 6-7):737-45. PubMed ID: 19249363 [TBL] [Abstract][Full Text] [Related]
14. Lysine-60 in copper chaperone Atox1 plays an essential role in adduct formation with a target Wilson disease domain. Hussain F; Rodriguez-Granillo A; Wittung-Stafshede P J Am Chem Soc; 2009 Nov; 131(45):16371-3. PubMed ID: 19863064 [TBL] [Abstract][Full Text] [Related]
15. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase. Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753 [TBL] [Abstract][Full Text] [Related]
16. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. Chintalapati S; Al Kurdi R; van Scheltinga AC; Kühlbrandt W J Mol Biol; 2008 May; 378(3):581-95. PubMed ID: 18374940 [TBL] [Abstract][Full Text] [Related]
17. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606 [TBL] [Abstract][Full Text] [Related]
18. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924 [TBL] [Abstract][Full Text] [Related]
19. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1. Arumugam K; Crouzy S Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277 [TBL] [Abstract][Full Text] [Related]
20. Biochemical basis of regulation of human copper-transporting ATPases. Lutsenko S; LeShane ES; Shinde U Arch Biochem Biophys; 2007 Jul; 463(2):134-48. PubMed ID: 17562324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]