These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11677719)

  • 1. Role of cholinergic mossy fibers in vestibular nuclei in the development of vestibular compensation.
    Kitahara T; Fukushima M; Takeda N; Saika T; Uno A; Kubo T
    Acta Otolaryngol Suppl; 2001; 545():101-4. PubMed ID: 11677719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cholinergic mossy fibers in medial vestibular and prepositus hypoglossal nuclei in vestibular compensation.
    Fukushima M; Kitahara T; Takeda N; Saika T; Uno A; Kubo T
    Neuroscience; 2001; 102(1):159-66. PubMed ID: 11226679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network simulation of the vestibular system: implications on the role of intervestibular nuclear coupling during vestibular compensation.
    Cartwright AD; Curthoys IS
    Biol Cybern; 1996 Dec; 75(6):485-93. PubMed ID: 9008352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pre-flocculectomy on Fos expression and NMDA receptor-mediated neural circuits in the central vestibular system after unilateral labyrinthectomy.
    Kitahara T; Fukushima M; Takeda N; Saika T; Kubo T
    Acta Otolaryngol; 2000 Oct; 120(7):866-71. PubMed ID: 11132722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early compensation of vestibulo-oculomotor symptoms after unilateral vestibular loss in rats is related to GABA(B) receptor function.
    Magnusson AK; Ulfendahl M; Tham R
    Neuroscience; 2002; 111(3):625-34. PubMed ID: 12031349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the flocculus in the development of vestibular compensation: immunohistochemical studies with retrograde tracing and flocculectomy using Fos expression as a marker in the rat brainstem.
    Kitahara T; Takeda N; Saika T; Kubo T; Kiyama H
    Neuroscience; 1997 Jan; 76(2):571-80. PubMed ID: 9015339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular compensation after unilateral labyrinthectomy: normal versus cerebellar dysfunctional mice.
    Aleisa M; Zeitouni AG; Cullen KE
    J Otolaryngol; 2007 Dec; 36(6):315-21. PubMed ID: 18076840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of unilateral vestibular deafferentation on the initial human vestibulo-ocular reflex to surge translation.
    Tian JR; Ishiyama A; Demer JL
    Exp Brain Res; 2007 Feb; 176(4):575-87. PubMed ID: 16900361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of vestibular efferent system alpha-9 nicotinic receptors to vestibulo-oculomotor interaction and short-term vestibular compensation after unilateral labyrinthectomy in mice.
    Eron JN; Davidovics N; Della Santina CC
    Neurosci Lett; 2015 Aug; 602():156-61. PubMed ID: 26163461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Expression of group I mGluRs in rat flocculus after unilateral labyrinthectomy].
    Zhang Y; Kong W
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Jul; 23(13):604-6. PubMed ID: 19894497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vestibular compensation in the horizontal vestibulo-ocular reflex of the goldfish.
    Weissenstein L; Ratnam R; Anastasio TJ
    Behav Brain Res; 1996 Feb; 75(1-2):127-37. PubMed ID: 8800649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vestibular compensation after labyrinthectomy and vestibular neurectomy in cats.
    Cass SP; Goshgarian HG
    Otolaryngol Head Neck Surg; 1991 Jan; 104(1):14-9. PubMed ID: 1900617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic and postsynaptic ion channel expression in vestibular nuclei neurons after unilateral vestibular deafferentation.
    Shao M; Popratiloff A; Hirsch JC; Peusner KD
    J Vestib Res; 2009; 19(5-6):191-200. PubMed ID: 20495236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurochemical changes in the cholinergic system of the rat lateral vestibular nucleus following hemilabyrinthectomy.
    Yamada C; Tachibana M; Kuriyama K
    Arch Otorhinolaryngol; 1988; 245(4):197-202. PubMed ID: 3263110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibular adaptation: how models can affect data interpretations.
    Galiana HL; Green AM
    Otolaryngol Head Neck Surg; 1998 Sep; 119(3):231-43. PubMed ID: 9743079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Expression change of mGluR5 in rat MVN after unilateral labyrinthectomy].
    Zhang Y; Kong W; Hu Y
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 May; 23(10):456-9. PubMed ID: 19670629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA(B) receptors contribute to vestibular compensation after unilateral labyrinthectomy in pigmented rats.
    Magnusson AK; Lindström S; Tham R
    Exp Brain Res; 2000 Sep; 134(1):32-41. PubMed ID: 11026723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics of the vestibulo-ocular interaction in patients with unilateral damage of the peripheral part of the vestibular system.The counter-rotation reaction of the eyes (report 4)].
    Skliut IA; Likhachev SA
    Vestn Otorinolaringol; 1990; (6):19-22. PubMed ID: 2075671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey.
    Boyle R; Belton T; McCrea RA
    Ann N Y Acad Sci; 1996 Jun; 781():244-63. PubMed ID: 8694418
    [No Abstract]   [Full Text] [Related]  

  • 20. Exploring sites for short-term VOR modulation using a bilateral model.
    Green A; Galiana HL
    Ann N Y Acad Sci; 1996 Jun; 781():625-8. PubMed ID: 8694458
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.